Rodrigo A. Castro
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo A. Castro.
Animal Behaviour | 2009
Loren D. Hayes; Adrian S. Chesh; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Joseph Robert Burger; Joydeep Bhattacharjee; Luis A. Ebensperger
The fitness consequences of plural breeding vary considerably among social vertebrates. We tested three hypotheses for the direct reproductive fitness consequences of group living in the degu Octodon degus, a social rodent endemic to central Chile. To test the ‘benefits of communal care’ hypothesis, we determined the relationship between the number of females per group, per capita direct fitness and offspring survival. To test the ‘food abundance and quality’ hypothesis, we determined the relationship between the biomass of preferred foods at burrow systems, group size, per capita direct fitness and offspring survival. To test the ‘predation risk’ hypothesis, we determined the relationship between group size, the density of burrow entrances to which social groups had access, per capita direct fitness, and survival of adults and offspring. Group size of core females (i.e. those with 50% or more nightly overlap) was negatively correlated with per capita direct fitness, but not with the number of females per group or total group size. Group living did not enhance the survival of offspring. Greater biomass of food (at 3 m and 9 m) and burrow density were not linked to larger groups and offspring survival. Our results did not support predictions of the ‘benefits of communal care’, ‘food abundance and quality’ or ‘predation risk’ hypothesis. Pending microsatellite analyses, we hypothesize that survival benefits linked to foraging group size and not reproductive fitness benefits may explain the evolution of sociality in degus.
Hormones and Behavior | 2011
Luis A. Ebensperger; Juan Ramírez-Estrada; Cecilia León; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Raúl Sobrero; Verónica Quirici; Joseph Robert Burger; Mauricio Soto-Gamboa; Loren D. Hayes
While ecological causes of sociality (or group living) have been identified, proximate mechanisms remain less clear. Recently, close connections between sociality, glucocorticoid hormones (cort) and fitness have been hypothesized. In particular, cort levels would reflect a balance between fitness benefits and costs of group living, and therefore baseline cort levels would vary with sociality in a way opposite to the covariation between sociality and fitness. However, since reproductive effort may become a major determinant of stress responses (i.e., the cort-adaptation hypothesis), cort levels might also be expected to vary with sociality in a way similar to the covariation between sociality and fitness. We tested these expectations during three years in a natural population of the communally rearing degu, Octodon degus. During each year we quantified group membership, measured fecal cortisol metabolites (a proxy of baseline cort levels under natural conditions), and estimated direct fitness. We recorded that direct fitness decreases with group size in these animals. Secondly, neither group size nor the number of females (two proxies of sociality) influenced mean (or coefficient of variation, CV) baseline cortisol levels of adult females. In contrast, cortisol increased with per capita number of offspring produced and offspring surviving to breeding age during two out of three years examined. Together, our results imply that variation in glucocorticoid hormones is more linked to reproductive challenge than to the costs of group living. Most generally, our study provided independent support to the cort-adaptation hypothesis, according to which reproductive effort is a major determinant, yet temporally variable, influence on cort-fitness covariation.
Journal of Mammalogy | 2011
Luis A. Ebensperger; Adrian S. Chesh; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Verónica Quirici; Joseph Robert Burger; Raúl Sobrero; Loren D. Hayes
Abstract Group living is thought to evolve whenever individuals attain a net fitness advantage due to reduced predation risk or enhanced foraging efficiency, but also when individuals are forced to remain in groups, which often occurs during high-density conditions due to limitations of critical resources for independent breeding. The influence of ecological limitations on sociality has been studied little in species in which reproduction is more evenly shared among group members. Previous studies in the caviomorph rodent Octodon degus (a New World hystricognath) revealed no evidence that group living confers an advantage and suggest that burrow limitations influence formation of social groups. Our objective was to examine the relevance of ecological limitations on sociality in these rodents. Our 4-year study revealed no association between degu density and use of burrow systems. The frequency with which burrow systems were used by degus was not related to the quality of these structures; only in 1 of the 4 years did the frequency of burrow use decrease with decreasing abundance of food. Neither the number of females per group nor total group size (related measures of degu sociality) changed with yearly density of degus. Although the number of males within social groups was lower in 2008, this variation was not related clearly to varying density. The percentage of females in social groups that bred was close to 99% and did not change across years of varying density. Our results suggest that sociality in degus is not the consequence of burrow limitations during breeding. Whether habitat limitations contribute to variation in vertebrate social systems is discussed.
Journal of Mammalogy | 2010
Verónica Quirici; Rodrigo A. Castro; Liliana Ortiz-Tolhuysen; Adrian S. Chesh; Joseph Robert Burger; Eduardo Miranda; Arturo Cortés; Loren D. Hayes; Luis A. Ebensperger
Abstract Both breeding activity and abundance and quality of available food are expected to influence daily movements of animals. Animals are predicted to range over large areas to meet high energy demands associated with reproduction (females) or to increase mating success (males). However, animals should expand their range areas whenever food conditions deteriorate. To examine the extent to which breeding activity versus food availability influence space use, we compared the size and location of range areas (home ranges) of the degu (Octodon degus), a diurnal rodent from semiarid environments of north-central Chile, during the austral winter and summer seasons. Degus produce young during the austral spring (September–October) when high-quality food is readily available. In contrast, degus do not breed during the austral summer (January–March) when food is scarce and of low quality. We predicted that degus would range over smaller areas in winter if the availability of food has a greater influence on space than breeding activity. Individuals were radiotracked in winter and the following summer over a 3-year period. Surveys of herbaceous cover were conducted during winter and summer to determine seasonal changes in the abundance and quality of primary food. In summer degus expanded and moved the location of their range areas to locations with available food. Given that preferred food was less abundant in summer than winter, we suggest that degu range areas are strongly influenced by food conditions.
Animal Cognition | 2008
Verónica Quirici; Rodrigo A. Castro; Javiera Oyarzún; Luis A. Ebensperger
Vigilance or scanning involves interruptions in foraging behavior when individuals lift their heads and conduct visual monitoring of the environment. Theoretical considerations assume that foraging with the “head down”, and scanning (“head up”) are mutually exclusive activities, such that foraging precludes vigilance. We tested this generalization in a socially foraging, small mammal model, the diurnal Chilean degu (Octodon degus). We studied spontaneous bouts of scanning of captive degus when foraging in pairs of female sibs and non-sibs. We examined the extent to which foraging (head down postures) and scanning (head up postures) were mutually exclusive in subjects exposed to none, partial, and complete lateral visual obstruction of their partners. In addition, we monitored the orientation of their bodies to examine the target of attention while foraging and scanning. Lastly, we examined the temporal occurrence of scanning events to assess the extent of scanning coordination, and whether this coordination is kin-biased. Visual obstruction had a significant influence on degu vigilance. Focal degus increased their quadrupedal and semi-erect scanning when foraging under a partially obstructed view of their partners. Degus oriented their bodies toward partners when foraging and scanning. Despite this, degus did not coordinate scanning bouts; instead, they scanned independently from one another. Relatedness among cage mates did not influence any aspect of degu behavior. Contrary to theoretical expectations, these results indicate that foraging and vigilance are not mutually exclusive, and that kinship per se does not influence scanning behavior and coordination.
Canadian Journal of Zoology | 2009
Patricio A. Lagos; AndreaMeierA. Meier; Liliana Ortiz Tolhuysen; Rodrigo A. Castro; FranciscoBozinovicF. Bozinovic; Luis A. Ebensperger
Escape theory predicts that a prey should flee from an approaching predator at a point in which the cost of stay- ing equals the cost of escape. We manipulated the cost of fleeing upon approaching human predators by providing the small mammal Octodon degus (Molina, 1782) with varying amounts of supplementary food likely to disappear while the animals are not in the food patch (e.g., hidden in their burrows). Simultaneously, we manipulated the risk of remaining in the patch by providing supplementary food at varying distances from the nearest burrow. Degus fled at a shorter distance to approaching predators when foraging in patches closer to the nearest burrow and supplied with relatively high abun- dance of food, but only when these rodents were foraging socially. Also, degus fled at a greater distance to approaching predators when foraging in patches far from the nearest burrow. Thus, functions linked to the loss of feeding opportunities and the risk of predation interact to influence flight initiation distance after a simulated attack. This study represented one of the few demonstrations of an interactive effect between cost and risks on antipredator behavior in a small, social prey mammal.
Acta Theriologica | 2009
Joseph Robert Burger; Adrian S. Chesh; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Ignasi Torre; Luis A. Ebensperger; Loren D. Hayes
Trap type may influence captures of individuals in different age-sex categories in small mammal studies, resulting in biased population and demographic information. We deployed 4 live trap types at burrow systems of the rodent, Octodon degus Molina, 1782, in central Chile to determine trap efficacy in capturing individuals of 6 demographic categories. We captured 2672 individuals in 17 709 trap days (15.1% trapping success). Tomahawks were the most efficient trap capturing half of individuals during both years, followed by mesh Sherman traps, large Sherman traps, and medium Sherman traps in 2005. All trap types equally sampled sexes. Large and medium Sherman traps provided similar demographic structure, where half of the individuals captured were pups; Tomahawk traps sampled more adults than pups. Relative captures of pups were similar across different trap types, suggesting that pups are equally sampled by each of the deployed trap types. Relative captures of adults were lower in Sherman traps, suggesting that this age class avoided solid-walled traps. For Octodon degus, the sole use of Tomahawk traps may produce sufficient, unbiased demographic data. Only 4 trap mortalities occurred (0.15%). Researchers may minimize trap mortality without compromising sufficient demographic sampling by trapping during peak animal activity.
Ethology | 2009
Luis A. Ebensperger; Adrian S. Chesh; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Verónica Quirici; Joseph Robert Burger; Loren D. Hayes
Behavioral Ecology and Sociobiology | 2012
Luis A. Ebensperger; Raúl Sobrero; Verónica Quirici; Rodrigo A. Castro; Liliana Ortiz Tolhuysen; Francisco Vargas; Joseph Robert Burger; René Quispe; Camila Patricia Villavicencio; Rodrigo A. Vásquez; Loren D. Hayes
Estudios LyD | 2007
José Francisco García; Rodrigo A. Castro