Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo A. Cunha is active.

Publication


Featured researches published by Rodrigo A. Cunha.


Neurochemistry International | 2001

Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors.

Rodrigo A. Cunha

Adenosine exerts two parallel modulatory roles in the CNS, acting as a homeostatic modulator and also as a neuromodulator at the synaptic level. We will present evidence to suggest that these two different modulatory roles are fulfilled by extracellular adenosine originated from different metabolic sources, and involve receptors with different sub-cellular localisation. It is widely accepted that adenosine is an inhibitory modulator in the CNS, a notion that stems from the preponderant role of inhibitory adenosine A(1) receptors in defining the homeostatic modulatory role of adenosine. However, we will review recent data that suggests that the synaptically localised neuromodulatory role of adenosine depend on a balanced activation of inhibitory A(1) receptors and mostly facilitatory A(2A) receptors. This balanced activation of A(1) and A(2A) adenosine receptors depends not only on the transient levels of extracellular adenosine, but also on the direct interaction between A(1) and A(2A) receptors, which control each others action.


International Review of Neurobiology | 2005

Adenosine and Brain Function

Bertil B. Fredholm; Chen J; Rodrigo A. Cunha; Per Svenningsson; Jean-Marie Vaugeois

Publisher Summary This chapter describes the role of adenosine in brain function. Adenosine is an endogenous neuromodulator that influences many functions in the central nervous system (CNS). The levels of adenosine increase when there is an imbalance between the rates of energy use and the rates of energy delivery. Increased neuronal activity, and hypoxia or ischemia results in elevated levels of adenosine. Adenosine receptors (ARs) were based on the ability of methylxanthines, such as theophylline and caffeine to act as antagonists. The two receptors, A1 and A2, inhibit and stimulate adenylyl cyclase respectively. The functions of ARs include: (1) regulation of nerve activity, (2) regulation of transmitter release, (3) interaction with other transmitter systems, and (4) various other functions. Increased extracellular adenosine in response to ischemia and hypoxia acts as a neuro-protectant during cerebral ischemia and other neuronal insults. ARs (A 1 Rs and A 2A Rs) are expressed at moderate to high levels in the brain areas enriched with dopaminergic innervation, thus providing an anatomical basis for interaction between these neurotransmitter systems. Different features of the phenotypes provide clues to the roles of defects in AR genes in human disease. The chapter discusses the roles of adenosine A 2A receptors in neurodegenerative disorders and ARs in psychiatric disorders. Caffeine is used to improve wakefulness and the main actions of caffeine are mediated by brain ARs. Adenosine might be an endogenous regulator of sleep–wake cycles, as adenosine analogs induced a sleep-like state. In addition, ARs may play many roles in pathways that contribute to pain. Clearly much additional work is needed to pinpoint the sites and mechanisms of action, as well as the roles in chronic pain states.


The Journal of Neuroscience | 2006

Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1–A2A Receptor Heteromers

Francisco Ciruela; Vicent Casadó; Ricardo J. Rodrigues; Rafael Luján; Javier Burgueño; Meritxell Canals; Janusz Borycz; Nelson Rebola; Steven R. Goldberg; Josefa Mallol; Antonio Cortés; Enric I. Canela; Juan F. López-Giménez; Graeme Milligan; Carme Lluis; Rodrigo A. Cunha; Sergi Ferré; Rafael Franco

The functional role of heteromers of G-protein-coupled receptors is a matter of debate. In the present study, we demonstrate that heteromerization of adenosine A1 receptors (A1Rs) and A2A receptors (A2ARs) allows adenosine to exert a fine-tuning modulation of glutamatergic neurotransmission. By means of coimmunoprecipitation, bioluminescence and time-resolved fluorescence resonance energy transfer techniques, we showed the existence of A1R–A2AR heteromers in the cell surface of cotransfected cells. Immunogold detection and coimmunoprecipitation experiments indicated that A1R and A2AR are colocalized in the same striatal glutamatergic nerve terminals. Radioligand-binding experiments in cotransfected cells and rat striatum showed that a main biochemical characteristic of the A1R–A2AR heteromer is the ability of A2AR activation to reduce the affinity of the A1R for agonists. This provides a switch mechanism by which low and high concentrations of adenosine inhibit and stimulate, respectively, glutamate release. Furthermore, it is also shown that A1R–A2AR heteromers constitute a unique target for caffeine and that chronic caffeine treatment leads to modifications in the function of the A1R–A2AR heteromer that could underlie the strong tolerance to the psychomotor effects of caffeine.


Purinergic Signalling | 2005

Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

Rodrigo A. Cunha

Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.


Current Pharmaceutical Design | 2010

Neuroinflammation, Oxidative Stress and the Pathogenesis of Alzheimers Disease

Paula Agostinho; Rodrigo A. Cunha; Catarina R. Oliveira

Alzheimers disease (AD) is the most common neurodegenerative disorder that affects the elderly. The increase of life-expectancy is transforming AD into a major health-care problem. AD is characterized by a progressive impairment of memory and other cognitive skills leading to dementia. The major pathogenic factor associated to AD seems to be amyloid-beta peptide (Aβ) oligomers that tend to accumulate extracellularly as amyloid deposits and are associated with reactive microglia and astrocytes as well as with degeneration of neuronal processes. The involvement of microglia and astrocytes in the onset and progress of neurodegenerative process in AD is becoming increasingly recognized, albeit it is commonly accepted that neuroinflammation and oxidative stress can have both detrimental and beneficial influences on the neural tissue. However, little is known about the interplay of microglia, astrocytes and neurons in response to Aβ, especially in the early phases of AD. This review discusses current knowledge about the involvement of neuroinflammation in AD pathogenesis, focusing on phenotypic and functional responses of microglia, astrocytes and neurons in this process. The abnormal production by glia cells of pro-inflammatory cytokines, chemokines and the complement system, as well as reactive oxygen and nitrogen species, can disrupt nerve terminals activity causing dysfunction and loss of synapses, which correlates with memory decline; these are phenomena preceding the neuronal death associated with late stages of AD. Thus, therapeutic strategies directed at controlling the activation of microglia and astrocytes and the excessive production of pro-inflammatory and pro-oxidant factors may be valuable to control neurodegeneration in dementia.


Experimental Neurology | 2007

Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice

Oscar Phelippe Permigotti Dall'Igna; Paulo Fett; Marcio Walace Santos Gomes; Diogo O. Souza; Rodrigo A. Cunha; Diogo R. Lara

Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimers disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimers disease.


Journal of Neurochemistry | 2002

Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices

Rodrigo A. Cunha; E. Sylvester Vizi; J. Alexandre Ribeiro; Ana M. Sebastião

Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high‐frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long‐term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low‐frequency (5 Hz) train stimulation, to mimic a long‐term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high‐frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low‐frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β‐methylene ADP (AOPCP), an inhibitor of ecto‐5′‐nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S‐(4‐nitrobenzyl)‐6‐thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low‐frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high‐frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high‐frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.


Biochimica et Biophysica Acta | 2011

Adenosine receptors and brain diseases: neuroprotection and neurodegeneration.

Catarina Gomes; Manuella P. Kaster; Angelo R. Tomé; Paula Agostinho; Rodrigo A. Cunha

Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinsons or Alzheimers disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.


Neuron | 2008

Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses.

Nelson Rebola; Rafael Luján; Rodrigo A. Cunha; Christophe Mulle

The physiological conditions under which adenosine A2A receptors modulate synaptic transmission are presently unclear. We show that A2A receptors are localized postsynaptically at synapses between mossy fibers and CA3 pyramidal cells and are essential for a form of long-term potentiation (LTP) of NMDA-EPSCs induced by short bursts of mossy fiber stimulation. This LTP spares AMPA-EPSCs and is likely induced and expressed postsynaptically. It depends on a postsynaptic Ca2+ rise, on G protein activation, and on Src kinase. In addition to A2A receptors, LTP of NMDA-EPSCs requires the activation of NMDA and mGluR5 receptors as potential sources of Ca2+ increase. LTP of NMDA-EPSCs displays a lower threshold for induction as compared with the conventional presynaptic mossy fiber LTP; however, the two forms of LTP can combine with stronger induction protocols. Thus, postsynaptic A2A receptors may potentially affect information processing in CA3 neuronal networks and memory performance.


The Journal of Neuroscience | 2005

Involvement of Cannabinoid Receptors in the Regulation of Neurotransmitter Release in the Rodent Striatum: A Combined Immunochemical and Pharmacological Analysis

Attila Köfalvi; Ricardo J. Rodrigues; Catherine Ledent; Ken Mackie; E. Sylvester Vizi; Rodrigo A. Cunha; Beáta Sperlágh

Despite the profound effect of cannabinoids on motor function, and their therapeutic potential in Parkinsons and Huntingtons diseases, the cellular and subcellular distributions of striatal CB1 receptors are not well defined. Here, we show that CB1 receptors are primarily located on GABAergic (vesicular GABA transporter-positive) and glutamatergic [vesicular glutamate transporter-1 (VGLUT-1)- and VGLUT-2-positive] striatal nerve terminals and are present in the presynaptic active zone, in the postsynaptic density, as well as in the extrasynaptic membrane. Both the nonselective agonist WIN55212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt] (EC50, 32 nm) and the CB1-selective agonist ACEA [N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] inhibited [3H]GABA release from rat striatal slices. The effect of these agonists was prevented by the CB1-selective antagonists SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] (1 μm) and AM251 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt] (1 μm), indicating that cannabinoids inhibit the release of GABA via activation of presynaptic CB1 receptors. Cannabinoids modulated glutamate release via both CB1 and non-CB1 mechanisms. Cannabinoid agonists and antagonists inhibited 25 mm K+-evoked [3H]glutamate release and sodium-dependent [3H]glutamate uptake. Partial involvement of CB1 receptors is suggested because low concentrations of SR141716A partly and AM251 fully prevented the effect of WIN55212-2 and CP55940 [5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol]. However, the effect of CB1 agonists and antagonists persisted in CB1 knock-out mice, indicating the involvement of non-CB1,CB1-like receptors. In contrast, cannabinoids did not modulate [3H]dopamine release or [3H]dopamine and [3H]GABA uptake. Our results indicate distinct modulation of striatal GABAergic and glutamatergic transmission by cannabinoids and will facilitate the understanding of the role and importance of the cannabinoid system in normal and pathological motor function.

Collaboration


Dive into the Rodrigo A. Cunha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge