Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo A. Peliciari-Garcia is active.

Publication


Featured researches published by Rodrigo A. Peliciari-Garcia.


Journal of Pineal Research | 2013

Melatonin improves insulin sensitivity independently of weight loss in old obese rats.

Ricardo Zanuto; Mário Alves de Siqueira-Filho; Luciana C. Caperuto; Reury Frank Pereira Bacurau; Emiko Hirata; Rodrigo A. Peliciari-Garcia; Fernanda Gaspar do Amaral; Anderson C. Marçal; Luciene M. Ribeiro; Joao Paulo Camporez; Ângelo Rafael Carpinelli; Silvana Bordin; José Cipolla-Neto; Carla Roberta de Oliveira Carvalho

In aged rats, insulin signaling pathway (ISP) is impaired in tissues that play a pivotal role in glucose homeostasis, such as liver, skeletal muscle, and adipose tissue. Moreover, the aging process is also associated with obesity and reduction in melatonin synthesis from the pineal gland and other organs. The aim of the present work was to evaluate, in male old obese Wistar rats, the effect of melatonin supplementation in the ISP, analyzing the total protein amount and the phosphorylated status (immunoprecipitation and immunoblotting) of the insulin cascade components in the rat hypothalamus, liver, skeletal muscle, and periepididymal adipose tissue. Melatonin was administered in the drinking water for 8‐ and 12 wk during the night period. Food and water intake and fasting blood glucose remained unchanged. The insulin sensitivity presented a 2.1‐fold increase both after 8‐ and 12 wk of melatonin supplementation. Animals supplemented with melatonin for 12 wk also presented a reduction in body mass. The acute insulin‐induced phosphorylation of the analyzed ISP proteins increased 1.3‐ and 2.3‐fold after 8‐ and 12 wk of melatonin supplementation. The total protein content of the insulin receptor (IR) and the IR substrates (IRS‐1, 2) remained unchanged in all investigated tissues, except for the 2‐fold increase in the total amount of IRS‐1 in the periepididymal adipose tissue. Therefore, the known age‐related melatonin synthesis reduction may also be involved in the development of insulin resistance and the adequate supplementation could be an important alternative for the prevention of insulin signaling impairment in aged organisms.


Journal of Pineal Research | 2014

Melatonin synthesis impairment as a new deleterious outcome of diabetes‐derived hyperglycemia

Fernanda Gaspar do Amaral; Ariane O. Turati; Mark Thomaz Ugliara Barone; Julieta Helena Scialfa; Daniella do Carmo Buonfiglio; Rafael Peres; Rodrigo A. Peliciari-Garcia; Solange Castro Afeche; Larissa de Sá Lima; Cristoforo Scavone; Silvana Bordin; Russel J. Reiter; Luiz Menna-Barreto; José Cipolla-Neto

Melatonin is a neurohormone that works as a nighttime signal for circadian integrity and health maintenance. It is crucial for energy metabolism regulation, and the diabetes effects on its synthesis are unresolved. Using diverse techniques that included pineal microdialysis and ultrahigh‐performance liquid chromatography, the present data show a clear acute and sustained melatonin synthesis reduction in diabetic rats as a result of pineal metabolism impairment that is unrelated to cell death. Hyperglycemia is the main cause of several diabetic complications, and its consequences in terms of melatonin production were assessed. Here, we show that local high glucose (HG) concentration is acutely detrimental to pineal melatonin synthesis in rats both in vivo and in vitro. The clinically depressive action of high blood glucose concentration in melatonin levels was also observed in type 1 diabetes patients who presented a negative correlation between hyperglycemia and 6‐sulfatoxymelatonin excretion. Additionally, high‐mean‐glycemia type 1 diabetes patients presented lower 6‐sulfatoxymelatonin levels when compared to control subjects. Although further studies are needed to fully clarify the mechanisms, the present results provide evidence that high circulating glucose levels interfere with pineal melatonin production. Given the essential role played by melatonin as a powerful antioxidant and in the control of energy homeostasis, sleep and biological rhythms and knowing that optimal glycemic control is usually an issue for patients with diabetes, melatonin supplementation may be considered as an additional tool to the current treatment.


Journal of Pineal Research | 2013

Adaptations of the aging animal to exercise: role of daily supplementation with melatonin.

Caroline Antonelli Mendes; Ana Maria de Souza Lopes; Fernanda Gaspar do Amaral; Rodrigo A. Peliciari-Garcia; Ariane O. Turati; Sandro M. Hirabara; Julieta H. Scialfa Falcão; José Cipolla-Neto

The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control‐trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3‐kinase (PI3K), mitogen‐activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.


Investigative Ophthalmology & Visual Science | 2011

Early-stage retinal melatonin synthesis impairment in streptozotocin-induced diabetic wistar rats.

Daniella do Carmo Buonfiglio; Rodrigo A. Peliciari-Garcia; Fernanda Gaspar do Amaral; Rafael Peres; Tatiane C.A. Nogueira; Solange Castro Afeche; José Cipolla-Neto

PURPOSE Retinal melatonin synthesis occurs in the photoreceptor layer in a circadian manner, controlling several physiologic rhythmic phenomena, besides being the most powerful natural free radical scavenger. The purpose of the present work was to evaluate the diurnal profile of retinal melatonin content and the regulation of its synthesis in the retina of streptozotocin-induced diabetic rats. METHODS Diabetes was induced in male Wistar rats (12 hour-12 hour light/dark cycle) with streptozotocin. Control, diabetic, and insulin-treated diabetic animals were killed every 3 hours throughout the light-dark cycle. Retinal melatonin content was measured by high-performance liquid chromatography, arylalkylamine N-acetyltransferase (AANAT) activity was analyzed by radiometric assay, Bmal1 gene expression was determined by qPCR, and cyclic adenosine monophosphate (cAMP) content was assessed by ELISA. RESULTS Control animals showed a clear retinal melatonin and AANAT activity daily rhythm, with high levels in the dark. Diabetic rats had both parameters reduced, and the impairment was prevented by immediate insulin treatment. In addition, the Bmal1 expression profile was lost in the diabetic group, and the retinal cAMP level was reduced 6 hours after lights on and 3 hours after lights off. CONCLUSIONS The present work shows a melatonin synthesis reduction in diabetic rats retinas associated with a reduction in AANAT activity that was prevented by insulin treatment. The Bmal1-flattened gene expression and the cAMP reduction seem to be responsible for the AANAT activity decrease in diabetic animals. The melatonin synthesis reduction observed in the pineal gland of diabetic rats is also observed in a local melatonin tissue synthesizer, the retina.


Chronobiology International | 2011

Expression of Circadian Clock and Melatonin Receptors within Cultured Rat Cardiomyocytes

Rodrigo A. Peliciari-Garcia; Melissa Moreira Zanquetta; Jéssica Andrade-Silva; Dayane Aparecida Gomes; Maria Luiza M. Barreto-Chaves; José Cipolla-Neto

Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demostrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor RORα have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and RORα and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORα were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erbα expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erbα mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erbα mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity. (Author correspondence: [email protected])


Brazilian Journal of Medical and Biological Research | 2013

Effects of melatonin on DNA damage induced by cyclophosphamide in rats

S.G. Ferreira; Rodrigo A. Peliciari-Garcia; S.A. Takahashi-Hyodo; A.C. Rodrigues; Fernanda Gaspar do Amaral; C.M. Berra; Silvana Bordin; Rui Curi; José Cipolla-Neto

The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.


Life Sciences | 2014

Norepinephrine activates NF-κB transcription factor in cultured rat pineal gland.

Darine Villela; Larissa de Sá Lima; Rafael Peres; Rodrigo A. Peliciari-Garcia; Fernanda Gaspar do Amaral; José Cipolla-Neto; Cristoforo Scavone; Solange Castro Afeche

AIMS The circadian rhythm in mammalian pineal melatonin secretion is modulated by norepinephrine (NE) released at night. NE interaction with β1-adrenoceptors activates PKA that phosphorylates the transcription factor CREB, leading to the transcription and translation of the arylalkylamine-N-acetyltransferase (AANAT) enzyme. Several studies have reported the interplay between CREB and the nuclear factor-κB (NF-κB) and a circadian rhythm for this transcription factor was recently described in the rat pineal gland. In this work we studied a direct effect of NE on NF-κB activation and the role played by this factor on melatonin synthesis and Aanat transcription and activity. MAIN METHODS Cultured rat pineal glands were incubated in the presence of two different NF-κB inhibitors, pyrrolidine-dithiocarbamate or sodium salicylate, and stimulated with NE. Melatonin content was quantified by HPLC with electrochemical detection. AANAT activity was measured by a radiometric assay and the expression of Aanat mRNA was analyzed by real-time PCR. Gel shift assay was performed to study the NF-κB activation in cultured rat pineal glands stimulated by NE. KEY FINDINGS Our results showed that the p50/p50 homodimer of NF-κB is activated by NE and that it has a role in melatonin synthesis, acting on Aanat transcription and activity. SIGNIFICANCE Here we present evidence that NF-κB is an important transcription factor that acts, directly or indirectly, on Aanat transcription and activity leading to a modulation of melatonin synthesis. NE plays a role in the translocation of NF-κB p50/p50 homodimer to the nucleus of pinealocytes, thus probably influencing the nocturnal pineal melatonin synthesis.


Growth Hormone & Igf Research | 2014

Lactate activates the somatotropic axis in rats

Rafael Barrera Salgueiro; Rodrigo A. Peliciari-Garcia; Daniella do Carmo Buonfiglio; Cibele N. Peroni; Maria Tereza Nunes

Under physical activity a wide variety of cellular metabolic products and hormones are altered in the blood stream, including lactate, a metabolite of pyruvate reduction, and growth hormone (GH). Although a positive correlation between lactate and GH seems to exist during exercise, the role of lactate as a mediator of GH production has never been investigated. Thus, the aim of this study was to investigate whether lactate could activate the somatotropic axis and stimulate GH synthesis/release, contributing to the enhanced somatotropic activity described in exercise conditions. Male adult Wistar rats were acutely treated with sodium lactate [15 or 150μmols, i.p.] at the beginning of the active period (Zeitgeber time 13-14), and euthanized by decapitation 30, 60 and 120min after the injections. Serum GH concentration were determined using ELISA and Gh and Igf-1 mRNA expressions were quantified by qPCR. Serum GH concentration and Gh mRNA expression were increased 30min after lactate injections for both treatments. However, [15μmols] of lactate injection kept GH serum concentration chronically high throughout the experimental period. Igf-1 mRNA expression was increased only 60min after challenge with [15μmols] of lactate, time point which corresponded to 30min after the serum GH peak. The present results led us to conclude that lactate mediates activation of the somatotropic axis, therefore emphasizing its possible role on GH synthesis/release, and further indicating that it could play a part on the increased GH secretion observed in exercise conditions.


BioMed Research International | 2013

Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

Rodrigo A. Peliciari-Garcia; Jéssica Andrade-Silva; José Cipolla-Neto; Carla Roberta de Oliveira Carvalho

Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE (1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.


Neuroscience Research | 2014

The in vitro maintenance of clock genes expression within the rat pineal gland under standard and norepinephrine-synchronized stimulation

Jéssica Andrade-Silva; José Cipolla-Neto; Rodrigo A. Peliciari-Garcia

Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery.

Collaboration


Dive into the Rodrigo A. Peliciari-Garcia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernanda Gaspar do Amaral

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Peres

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge