Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo B. Andrade is active.

Publication


Featured researches published by Rodrigo B. Andrade.


Organic Letters | 1999

Synthesis and Use of Glycosyl Phosphates as Glycosyl Donors

Obadiah J. Plante; Rodrigo B. Andrade; Peter H. Seeberger

Differentially protected glycosyl phosphates prepared by a straightforward synthesis from glycal precursors are used as powerful glycosyl donors. Activation of beta-glycosyl phosphates by TMSOTf at -78 degrees C achieves the selective formation of beta-glycosidic linkages in excellent yields with complete stereoselectivity. Reaction with thiols results in the conversion of glycosyl phosphates into thioglycosides in nearly quantitative yield. An orthogonal coupling strategy using glycosyl phosphate donors and thioethyl glycoside acceptors allows for the rapid synthesis of a trisaccharide.


Journal of Organic Chemistry | 2010

Concise Total Syntheses of (±)-Strychnine and (±)-Akuammicine†

Gopal Sirasani; Tapas Paul; William Jr. Dougherty; Scott Kassel; Rodrigo B. Andrade

Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).


Langmuir | 2012

Biofunctional Paper via the Covalent Modification of Cellulose

Arthur Yu; Jing Shang; Fang Cheng; Bradford A. Paik; Justin M. Kaplan; Rodrigo B. Andrade; Daniel M. Ratner

Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies, and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to immobilize small molecules, proteins, and DNA covalently onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membranes bioactivity was specific, dose-dependent, and stable over a long period of time. The use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices.


Journal of the American Chemical Society | 2013

Domino Michael/Mannich/N-Alkylation Route to the Tetrahydrocarbazole Framework of Aspidosperma Alkaloids: Concise Total Syntheses of (−)-Aspidospermidine, (−)-Tabersonine, and (−)-Vincadifformine

Senzhi Zhao; Rodrigo B. Andrade

We report a novel, asymmetric domino Michael/Mannich/N-alkylation sequence for the rapid assembly of the tetrahydrocarbazole framework of Aspidosperma alkaloids. This method was utilized in the concise total syntheses of classical targets (-)-aspidospermidine, (-)-tabersonine, and (-)-vincadifformine in 10 or 11 steps. Additional key steps include ring-closing metathesis to prepare the D-ring and Bosch-Rubiralta spirocyclization to prepare the C-ring.


Langmuir | 2012

An Organophosphonate Strategy for Functionalizing Silicon Photonic Biosensors

Jing Shang; Fang Cheng; Manish Dubey; Justin M. Kaplan; Meghana Rawal; Xi Jiang; David S. Newburg; Philip A. Sullivan; Rodrigo B. Andrade; Daniel M. Ratner

Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH, or low-pH solutions and after 1 month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new antiviral agents to prevent infectious disease.


Organic Letters | 2011

Total Synthesis of (−)-Leuconicine A and B

Gopal Sirasani; Rodrigo B. Andrade

Concise asymmetric total syntheses of Strychnos alkaloids (-)-leuconicine A (14 steps, 9% overall yield) and B (13 steps, 10% overall yield) have been accomplished. Key steps include (1) our sequential one-pot spiro-cyclization/intramolecular aza-Baylis-Hillman method to prepare the ABCE framework; (2) a novel domino acylation/Knoevenagel cyclization to prepare the F-ring; and (3) a Heck cyclization to access the D-ring.


Organic Letters | 2009

Sequential One-Pot Cyclizations: Concise Access to the ABCE Tetracyclic Framework of Strychnos Alkaloids‡

Gopal Sirasani; Rodrigo B. Andrade

A sequential one-pot biscyclization route to the ABCE tetracyclic framework of Strychnos alkaloids has been developed. Specifically, the AgOTf-mediated spirocyclization of an appropriately functionalized indole 3-carbinamide afforded a stable spiroindolenine intermediate; subsequent addition of DBU to the reaction mixture effected an unprecedented intramolecular aza-Baylis-Hillman reaction, delivering a tetracyclic product in 70% isolated yield.


Bioorganic & Medicinal Chemistry | 2014

Synthesis and Evaluation of Strychnos Alkaloids as MDR Reversal Agents for Cancer Cell Eradication

Surendrachary Munagala; Gopal Sirasani; Praveen Kokkonda; Manali Phadke; Natalia Krynetskaia; Peihua Lu; Frances J. Sharom; Sidhartha Chaudhury; Mohamed Diwan M. AbdulHameed; Gregory Tawa; Anders Wallqvist; Rogelio Martinez; Wayne E. Childers; Magid Abou-Gharbia; Evgeny Krynetskiy; Rodrigo B. Andrade

Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand-protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd=4.4μM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.


Journal of Organic Chemistry | 2011

Total synthesis of (-)-4,8,10-tridesmethyl telithromycin.

Venkata Velvadapu; Tapas Paul; Bharat Wagh; Ian Glassford; Charles DeBrosse; Rodrigo B. Andrade

Novel sources of antibiotics are required to address the serious problem of antibiotic resistance. Telithromycin (2) is a third-generation macrolide antibiotic prepared from erythromycin (1) and used clinically since 2004. Herein we report the details of our efforts that ultimately led to the total synthesis of (-)-4,8,10-tridesmethyl telithromycin (3) wherein methyl groups have been replaced with hydrogens. The synthesis of desmethyl macrolides has emerged as a novel strategy for preparing bioactive antibiotics.


PLOS Computational Biology | 2013

Impact of Ribosomal Modification on the Binding of the Antibiotic Telithromycin Using a Combined Grand Canonical Monte Carlo/Molecular Dynamics Simulation Approach

Meagan C. Small; Pedro E. M. Lopes; Rodrigo B. Andrade; Alexander D. MacKerell

Resistance to macrolide antibiotics is conferred by mutation of A2058 to G or methylation by Erm methyltransferases of the exocyclic N6 of A2058 (E. coli numbering) that forms the macrolide binding site in the 50S subunit of the ribosome. Ketolides such as telithromycin mitigate A2058G resistance yet remain susceptible to Erm-based resistance. Molecular details associated with macrolide resistance due to the A2058G mutation and methylation at N6 of A2058 by Erm methyltransferases were investigated using empirical force field-based simulations. To address the buried nature of the macrolide binding site, the number of waters within the pocket was allowed to fluctuate via the use of a Grand Canonical Monte Carlo (GCMC) methodology. The GCMC water insertion/deletion steps were alternated with Molecular Dynamics (MD) simulations to allow for relaxation of the entire system. From this GCMC/MD approach information on the interactions between telithromycin and the 50S ribosome was obtained. In the wild-type (WT) ribosome, the 2′-OH to A2058 N1 hydrogen bond samples short distances with a higher probability, while the effectiveness of telithromycin against the A2058G mutation is explained by a rearrangement of the hydrogen bonding pattern of the 2′-OH to 2058 that maintains the overall antibiotic-ribosome interactions. In both the WT and A2058G mutation there is significant flexibility in telithromycins imidazole-pyridine side chain (ARM), indicating that entropic effects contribute to the binding affinity. Methylated ribosomes show lower sampling of short 2′-OH to 2058 distances and also demonstrate enhanced G2057-A2058 stacking leading to disrupted A752-U2609 Watson-Crick (WC) interactions as well as hydrogen bonding between telithromycins ARM and U2609. This information will be of utility in the rational design of novel macrolide analogs with improved activity against methylated A2058 ribosomes.

Collaboration


Dive into the Rodrigo B. Andrade's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Shang

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge