Rodrigo Fernández-Pacheco
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo Fernández-Pacheco.
Nano Today | 2007
Manuel Arruebo; Rodrigo Fernández-Pacheco; M. Ricardo Ibarra; Jesus Santamaria
Controlled release of drugs from nanostructured functional materials, especially nanoparticles (NPs), is attracting increasing attention because of the opportunities in cancer therapy and the treatment of other ailments. The potential of magnetic NPs stems from the intrinsic properties of their magnetic cores combined with their drug loading capability and the biochemical properties that can be bestowed on them by means of a suitable coating. Here we review the problems and recent advances in the development of magnetic NPs for drug delivery, focusing particularly on the materials involved.
BMC Plant Biology | 2009
Eduardo Corredor; P.S. Testillano; María-José Coronado; Pablo González-Melendi; Rodrigo Fernández-Pacheco; C. Marquina; M. Ricardo Ibarra; Jesús M. de la Fuente; Diego Rubiales; Alejandro Pérez-de-Luque; Maria-Carmen Risueño
BackgroundIn recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of Cucurbita pepo.ResultsThe nanoparticles were applied in planta using two different application methods, injection and spraying, and magnets were used to retain the particles in movement in specific areas of the plant. The main experimental approach, using correlative light and electron microscopy provided evidence of intracellular localization of nanoparticles and their displacement from the application point. Long range movement of the particles through the plant body was also detected, particles having been found near the magnets used to immobilize and concentrate them. Furthermore, cell response to the nanoparticle presence was detected.ConclusionNanoparticles were capable of penetrating living plant tissues and migrating to different regions of the plant, although movements over short distances seemed to be favoured. These findings show that the use of carbon coated magnetic particles for directed delivery of substances into plant cells is a feasible application.
Small | 2008
B. Díaz; Christian Sánchez-Espinel; Manuel Arruebo; Jose Faro; Encarnación de Miguel; Susana Magadán; Clara Yagüe; Rodrigo Fernández-Pacheco; M. Ricardo Ibarra; Jesus Santamaria; África González-Fernández
Inorganic nanoparticles (NPs) show great potential for medicinal therapy. However, biocompatibility studies are essential to determine if they are safe. Here, five different NPs are compared for their cytotoxicity, internalization, aggregation in medium, and reactive oxygen species (ROS) production, using tumoral and normal human blood cells. Differences depending on the cell type are analyzed, and no direct correlation between ROS production and cell toxicity is found. Results are discussed with the aim of standardizing the procedures for the evaluation of the toxicity.
Nanotechnology | 2006
Rodrigo Fernández-Pacheco; Manuel Arruebo; C. Marquina; Ricardo Ibarra; Jordi Arbiol; Jesus Santamaria
In spite of encouraging progress in recent years, the development of magnetic nanoparticles that can be used as drug delivery vectors remains a significant challenge for materials scientists. Among the multiple hurdles that must be overcome are the provision of a sufficiently high magnetic response, a high loading capacity for therapeutic or diagnosis materials and a sufficient degree of biocompatibility. In this work we describe the preparation of encapsulated magnetic nanoparticles consisting of a metallic iron core and an amorphous silica shell by using a modification of the arc-discharge method. This is a simple and inexpensive way to produce well-coated iron nanoparticles. The particles thus obtained present a much stronger magnetic response than any composite material produced up to now involving magnetic nanoparticles encapsulated in inorganic matrices, and the rich chemistry and easy functionalization of the silica outer surface make them promising materials for their application as magnetic carriers.
Journal of Magnetism and Magnetic Materials | 2007
Rodrigo Fernández-Pacheco; C. Marquina; J. Gabriel Valdivia; Martín Gutiérrez; M. Soledad Romero; Rosa Cornudella; Alicia Laborda; Américo Viloria; Teresa Higuera; Alba García; J. Antonio García de Jalón; M. Ricardo Ibarra
Magnetic nanoparticles are good candidates used for the targeted delivery of anti-tumor agents. They can be concentrated on a desired region, reducing collateral effects and improving the efficiency of the chemotherapy. We propose a method in which permanent magnets are implanted by laparoscopic technique directly in the affected organ. This method proposes the use of Fe@C nanoparticles, which are loaded with doxorubicin and injected intravenously. The particles, once attracted to the magnet, release the drug at the tumor region. This method seems to be more promising and effective than that based on the application of external magnetic fields.
Journal of Physics D | 2010
Sara Puertas; María Moros; Rodrigo Fernández-Pacheco; M. R. Ibarra; Valeria Grazú; J M de la Fuente
There is a growing interest in the use of magnetic nanoparticles (MNPs) for their application in quantitative and highly sensitive biosensors. Their use as labels of biological recognition events and their detection by means of some magnetic method constitute a very promising strategy for quantitative high-sensitive lateral-flow assays.In this paper, we report the importance of nanoparticle functionalization for the improvement of sensitivity for a lateral-flow immunoassay. More precisely, we have found that immobilization of IgG anti-hCG through its polysaccharide moieties on MNPs allows more successful recognition of the hCG hormone.Although we have used the detection of hCG as a model in this work, the strategy of binding antibodies to MNPs through its sugar chains reported here is applicable to other antibodies. It has huge potential as it will be very useful for the development of quantitative and high-sensitive lateral-flow assays for its use on human and veterinary, medicine, food and beverage manufacturing, pharmaceutical, medical biologics and personal care product production, environmental remediation, etc.
Journal of Applied Physics | 2005
David Serrate; J. M. De Teresa; P. A. Algarabel; Rodrigo Fernández-Pacheco; J. Galibert; M. R. Ibarra
The magnetoresistance (MR) in cold-pressed magnetite nanopowders has been studied using pulsed magnetic field up to 42 T and steady field up to 12 T. Ball milling in air produces pure and stoichiometric Fe3O4 grains of nanometric size coated by a thin layer of Fe2O3, which electrically isolates the magnetite and acts as a tunnel barrier. Therefore, the intergrain magnetoresistance of magnetite grain boundaries can be analyzed regardless of the bulk transport properties. At high fields and high temperature, the MR depends linearly on the field, whereas at lower fields a direct tunneling contribution governed by the surface magnetization appears. Below the Verwey transition (T<120K) the linear high-field MR disappears. We interpret these results in terms of the grain-boundary properties.
Cell Biology International | 2008
Gerardo F. Goya; I. Marcos-Campos; Rodrigo Fernández-Pacheco; B. Sáez; Javier Godino; L. Asín; J. Lambea; P. Tabuenca; Jose I. Mayordomo; Luis Larrad; M. R. Ibarra; Alejandro Tres
We have investigated the internalization of magnetic nanoparticles (NPs) into dendritic cells (DCs) in order to assess both the final location of the particles and the viability of the cultured cells. The particles, consisting of a metallic iron core covered with carbon, showed no toxic effects on the DCs and had no effect in their viability. We found that mature DCs are able to incorporate magnetic nanoparticles in a range of size from 10 nm to ca. 200 nm, after 24 h of incubation. We describe a method to separate cells loaded with NPs, and analyze the resulting material by electron microscopy and magnetic measurements. It is found that NPs are internalized in lysosomes, providing a large magnetic signal. Our results suggest that loading DCs with properly functionalized magnetic NPs could be a promising strategy for improved vectorization in cancer diagnosis and treatment.
Journal of Materials Chemistry C | 2014
Carlos Fernandes; Clara Pereira; M. P. Fernández-García; André M. Pereira; Alexandra Guedes; Rodrigo Fernández-Pacheco; Alfonso Ibarra; M. Ricardo Ibarra; J. P. Araújo; Cristina Freire
This work reports the tailored design of novel mixed ferrite nanoparticles, CoxMn1−xFe2O4 (x = 0, 0.3, 0.7, and 1), through an optimized one-pot aqueous coprecipitation process. The influence of the substitution between Mn(II) and Co(II) and of the alkaline agent, isopropanolamine (MIPA) or NaOH, on the morphological, chemical and magnetic properties of the nanomaterials was investigated. The joint action between chemical substitution and type of alkaline agent allowed a precise tuning of the particle size, magnetic properties and inversion degree of the spinel structure. A wide range of particle dimensions (from 3 to 30 nm) and saturation magnetization (from 57 to 71 emu g−1) was achieved. The increase of Co(II) content from x = 0 to x = 1 led to a systematic decrease of the particle size, regardless of the base type, which could be modelled by an exponential decay function. For each Co:Mn composition, the use of MIPA instead of the traditional NaOH promoted a three times reduction of the particle size and simultaneously switched the magnetic state of the CoxMn1−xFe2O4 nanomaterials from ferromagnetic to superparamagnetic. These results constitute a step forward in the challenging quest for high-performance magnetic nanoprobes by an eco-friendly synthesis route.
Nanoscale Research Letters | 2011
R. Córdoba; Rodrigo Fernández-Pacheco; Amalio Fernández-Pacheco; Alexandre Gloter; C. Magen; Odile Stéphan; M. R. Ibarra; José María de Teresa
Nanolithography techniques in a scanning electron microscope/focused ion beam are very attractive tools for a number of synthetic processes, including the fabrication of ferromagnetic nano-objects, with potential applications in magnetic storage or magnetic sensing. One of the most versatile techniques is the focused electron beam induced deposition, an efficient method for the production of magnetic structures highly resolved at the nanometric scale. In this work, this method has been applied to the controlled growth of magnetic nanostructures using Co2(CO)8. The chemical and structural properties of these deposits have been studied by electron energy loss spectroscopy and high-resolution transmission electron microscopy at the nanometric scale. The obtained results allow us to correlate the chemical and structural properties with the functionality of these magnetic nanostructures.