Rodrigo Guabiraba
François Rabelais University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo Guabiraba.
The Journal of Allergy and Clinical Immunology | 2014
Dong-Dong Li; Rodrigo Guabiraba; Anne-Gaelle Besnard; Mousa Komai-Koma; Majid S. Jabir; Li-Li Zhang; Gerard J. Graham; Mariola Kurowska-Stolarska; Foo Y. Liew; Charles McSharry; Damo Xu
Background The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. Objectives We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Methods Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. Results IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo. Conclusions IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner.
American Journal of Respiratory Cell and Molecular Biology | 2009
Remo Castro Russo; Rodrigo Guabiraba; Cristiana C. Garcia; Lucíola S. Barcelos; Ester Roffê; Adriano L.S. Souza; Flávio A. Amaral; Daniel Cisalpino; Geovanni Dantas Cassali; Andrea Doni; Riccardo Bertini; Mauro M. Teixeira
Pulmonary fibrosis is characterized by chronic inflammation and excessive collagen deposition. Neutrophils are thought to be involved in the pathogenesis of lung fibrosis. We hypothesized that CXCR2-mediated neutrophil recruitment is essential for the cascade of events leading to bleomycin-induced pulmonary fibrosis. CXCL1/KC was detected as early as 6 hours after bleomycin instillation and returned to basal levels after Day 8. Neutrophils were detected in bronchoalveolar lavage and interstitium from 12 hours and peaked at Day 8 after instillation. Treatment with the CXCR2 receptor antagonist, DF2162, reduced airway neutrophil transmigration but led to an increase of neutrophils in lung parenchyma. There was a significant reduction in IL-13, IL-10, CCL5/RANTES, and active transforming growth factor (TGF)-beta(1) levels, but not on IFN-gamma and total TGF-beta(1,) and enhanced granulocyte macrophage-colony-stimulating factor production in DF2162-treated animals. Notably, treatment with the CXCR2 antagonist led to an improvement of the lung pathology and reduced collagen deposition. Using a therapeutic schedule, DF2162 administered from Days 8 to 16 after bleomycin reduced pulmonary fibrosis and levels of active TGF-beta(1) and IL-13. DF2162 treatment reduced bleomycin-induced expression of von Willebrand Factor, a marker of angiogenesis, in the lung. In vitro, DF2162 reduced the angiogenic activity of IL-8 on human umbilical vein endothelial cells. In conclusion, we show that CXCR2 plays an important role in mediating fibrosis after bleomycin instillation. The compound blocks angiogenesis and the production of pro-angiogenic cytokines, and decreases IL-8-induced endothelial cell activation. An effect on neutrophils does not appear to account for the major effects of the blockade of CXCR2 in the system.
Hepatology | 2015
Pedro Marques; André G. Oliveira; Rafaela Vaz Sousa Pereira; Bruna Araújo David; Lindisley Ferreira Gomides; Adriana Machado Saraiva; Daniele Araújo Pires; Júlia Tosta Novaes; Daniel de Oliveira Patricio; Daniel Cisalpino; Zélia Menezes-Garcia; W. Matthew Leevy; Sarah Chapman; GermánArturo Mahecha; Rafael Elias Marques; Rodrigo Guabiraba; Vicente de Paulo Martins; Danielle G. Souza; Daniel Santos Mansur; Mauro Martins Teixeira; M. Fatima Leite; Gustavo B. Menezes
Drug‐induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self‐DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA‐rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll‐like receptor 9 (TLR9)‐mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up‐regulated TLR9 expression during acetaminophen‐mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF‐κB pathway. Likewise, adoptive transfer of wild‐type neutrophils to TLR9−/− mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. Conclusion: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue. (Hepatology 2015;61:348–360)
Journal of Immunology | 2003
Danielle G. Souza; Rodrigo Guabiraba; Vanessa Pinho; Adrian Bristow; Stephen Poole; Mauro M. Teixeira
TNF-α release and action are central in the pathogenesis of the local and systemic inflammatory responses that occur after intestinal reperfusion. In this study we examined whether IL-1 participated in the cascade of events leading to TNF-α production and TNF-α-mediated injury following reperfusion of the ischemic superior mesenteric artery in rats. Blockade of the action of IL-1 by the use of anti-IL-1 antiserum or administration of IL-1R antagonist (IL-1ra), a natural antagonist of IL-1Rs, resulted in marked enhancement of reperfusion-associated tissue injury, TNF-α expression, and lethality. In contrast, there was marked decrease in IL-10 production. Facilitation of IL-1 action by administration of anti-IL-1ra, which antagonizes endogenous IL-1ra, or exogenous administration of rIL-1β suppressed reperfusion-induced tissue pathology, TNF-α production, and lethality, but increased IL-10 production. Exogenous administration of IL-10 was effective in preventing the increase in tissue or plasma levels of TNF-α, the exacerbated tissue injury, and lethality. An opposite effect was observed after treatment with anti-IL-10, demonstrating a role for endogenous production of IL-10 in modulating exacerbated reperfusion-associated tissue pathology and lethality. Finally, pretreatment with anti-IL-10 reversed the protective effect of IL-1β on reperfusion-associated lethality. Thus, IL-1 plays a major role in driving endogenous IL-10 production and protects against the TNF-α-dependent systemic and local acute inflammatory response following intestinal reperfusion injury.
PLOS Pathogens | 2010
Cristiana C. Garcia; Remo Castro Russo; Rodrigo Guabiraba; Caio T. Fagundes; Rafael B. Polidoro; Luciana P. Tavares; Ana Paula C. Salgado; Geovanni Dantas Cassali; Lirlândia P. Sousa; Alexandre V. Machado; Mauro M. Teixeira
Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1+ cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans.
PLOS ONE | 2010
Rodrigo Guabiraba; Rafael Elias Marques; Anne-Gaelle Besnard; Caio T. Fagundes; Danielle G. Souza; Bernhard Ryffel; Mauro M. Teixeira
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.
American Journal of Pathology | 2009
Angélica T. Vieira; Caio T. Fagundes; Ana L. Alessandri; Marina Gomes Miranda e Castor; Rodrigo Guabiraba; Valdinéria Oliveira Borges; Kátia D. Silveira; Érica Leandro Marciano Vieira; Juliana L. Gonçalves; Tarcília Aparecida Silva; Maud Deruaz; Amanda E. I. Proudfoot; Lirlândia P. Sousa; Mauro M. Teixeira
Eosinophils are multifunctional leukocytes implicated in numerous inflammatory diseases. The present study was conducted to clarify the precise role of eosinophils in the development of colitis by using eosinophil-depleted mice and a novel chemokine-binding protein that neutralizes CCL11 action. Colitis was induced by administration of dextran sodium sulfate (DSS) to wild-type and eosinophil-deficient DeltadblGATA-1 mice. Accumulation of eosinophils in the gut of mice given DSS paralleled worsening of clinical score and weight loss. In response to DSS, DeltadblGATA-1 mice showed virtual absence of eosinophil recruitment, amelioration of clinical score, weight loss, and tissue destruction, and no lethality. There was a decrease in CXCL1 and CCL3 production and decreased neutrophil influx in the intestine of DeltadblGATA-1 mice. Transfer of bone marrow cells from wild-type mice reconstituted disease manifestation in DSS-treated DeltadblGATA-1 mice, and levels of CCL11 were increased after DSS treatment and localized to inflammatory cells. Treatment with the chemokine-binding protein evasin-4 at a dose that prevented the function of CCL11 greatly ameliorated clinical score, weight loss, overall tissue destruction, and death rates. In conclusion, the influx of eosinophils is critical for the induction of colitis by DSS. Treatment with a novel chemokine-binding protein decreased eosinophil influx and greatly ameliorated colitis, suggesting that strategies that interfere with the recruitment of eosinophils may be useful as therapy for colitis.
PLOS Pathogens | 2015
Anne-Gaelle Besnard; Rodrigo Guabiraba; Wanda Niedbala; Jennifer Palomo; Flora Reverchon; Kevin N. Couper; Bernhard Ryffel; Foo Y. Liew
Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.
Expert Opinion on Therapeutic Targets | 2013
Rafael Elias Marques; Rodrigo Guabiraba; Remo Castro Russo; Mauro M. Teixeira
Introduction: Chemokines play important roles in inflammation and in immune responses. This article will discuss the current literature on the C–C chemokine ligand 5 (CCL5), and whether it is a therapeutic target in the context of various allergic, autoimmune or infectious diseases. Areas covered: Small-molecule inhibitors, chemokine and chemokine receptor-deficient mice, antibodies and modified chemokines are the current tools available for CCL5 research, and there are several ongoing clinical trials targeting the CCL5 receptors, CCR1, CCR3 and CCR5. There are fewer studies specifically targeting the chemokine itself and clinical studies with anti-CCL5 antibodies are still to be carried out. Expert opinion: Although clinical trials are strongly biased toward HIV treatment and prevention with blockers of CCR5, the therapeutic potential for CCL5 and its receptors in other diseases is relevant. Overall, it is not likely that specific targeting of CCL5 will result in new adjunct strategies for the treatment of infectious diseases with a major inflammatory component. However, targeting CCL5 could result in novel therapies for chronic inflammatory diseases, where it may decrease inflammatory responses and fibrosis, and certain solid tumors, where it may have a role in angiogenesis.
Immunology | 2013
Peter Natesan Pushparaj; Dong Li; Mousa Komai-Koma; Rodrigo Guabiraba; James Alexander; Charles McSharry; Damo Xu
Interleukin‐33 (IL‐33) and its receptor ST2 are over‐expressed in clinical colitis tissue. However, the significance of these observations is at present unknown. Significantly, we demonstrate here that IL33 and ST2 are the primary early genes induced in the inflamed colon of BALB/c mice following dextran sulphate sodium (DSS)‐induced experimental ulcerative colitis. Accordingly diarrhoea and DSS‐induced colon inflammation were impaired in ST2−/− BALB/c mice and exacerbated in wild‐type mice by treatment with exogenous recombinant IL‐33, associated respectively with reduced and enhanced expression of chemokines (CXCL9 and CXCL10), and inflammatory (IL‐4, IL‐13, IL‐1, IL‐6, IL‐17) and angiogenic (vascular endothelial growth factor) cytokines in vivo. The exacerbation effect of treatment with recombinant IL‐33 on DSS‐induced acute colitis was abolished in IL‐4−/− BALB/c mice. Hence, IL‐33 signalling via ST2, by inducing an IL‐4‐dependent immune response, may be a major pathogenic factor in the exacerbation of ulcerative colitis.