Rodrigo M. Maza
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo M. Maza.
PLOS ONE | 2012
Mónica Yunta; Manuel Nieto-Díaz; Francisco J. Esteban; Marcos J. Caballero-López; R Navarro-Ruiz; David Reigada; D. Wolfgang Pita-Thomas; Ángela del Águila; Teresa Muñoz-Galdeano; Rodrigo M. Maza
Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.
Frontiers in Cellular Neuroscience | 2014
Manuel Nieto-Díaz; Francisco J. Esteban; David Reigada; Teresa Muñoz-Galdeano; Mónica Yunta; Marcos J. Caballero-López; R Navarro-Ruiz; Ángela del Águila; Rodrigo M. Maza
Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.
PLOS ONE | 2010
Wolfgang Pita-Thomas; Cm Fernandez-Martos; Mónica Yunta; Rodrigo M. Maza; R Navarro-Ruiz; Marcos Javier Lopez-Rodríguez; David Reigada; Manuel Nieto-Sampedro; Manuel Nieto-Díaz
The annual regeneration cycle of deer (Cervidae, Artiodactyla) antlers represents a unique model of epimorphic regeneration and rapid growth in adult mammals. Regenerating antlers are innervated by trigeminal sensory axons growing through the velvet, the modified form of skin that envelopes the antler, at elongation velocities that reach one centimetre per day in the common deer (Cervus elaphus). Several axon growth promoters like NT-3, NGF or IGF-1 have been described in the antler. To increase the knowledge on the axon growth environment, we have combined different gene-expression techniques to identify and characterize the expression of promoting molecules not previously described in the antler velvet. Cross-species microarray analyses of deer samples on human arrays allowed us to build up a list of 90 extracellular or membrane molecules involved in axon growth that were potentially being expressed in the antler. Fifteen of these genes were analysed using PCR and sequencing techniques to confirm their expression in the velvet and to compare it with the expression in other antler and skin samples. Expression of 8 axon growth promoters was confirmed in the velvet, 5 of them not previously described in the antler. In conclusion, our work shows that antler velvet provides growing axons with a variety of promoters of axon growth, sharing many of them with deers normal and pedicle skin.
Journal of Neuroscience Research | 2010
Wolfgang Pita-Thomas; Manuel Nieto-Sampedro; Rodrigo M. Maza; Manuel Nieto-Díaz
Every year male deers completely regenerate their antlers. During this process, antlers are reinnervated by sensory fibers, growing at the highest rate recorded for any adult mammal. Despite its clinical potential, only a few studies have dealt with this fascinating phenomenon. Among the possible factors underlying fast growth of the antlers innervation, the effects of the antlers endocrine and paracrine factors were evaluated, using an in vitro assay for sensory neurite growth. We found that soluble molecules secreted by the velvet, the modified skin that covers the antler, strongly promote neurite outgrowth. Using specific blocking antibodies, we demonstrated that nerve growth factor is partially responsible for these effects, although other unidentified molecules are also involved. On the contrary, neither endocrine serum factors nor antler substrates promoted neurite outgrowth, although antler substrata from deep velvet layers cause neurite outgrowth orientation. Taken together, our results point to the existence in the deep velvet of an environment that promotes oriented axon growth, in agreement with the distribution of the antler innervation.
Purinergic Signalling | 2017
David Reigada; R Navarro-Ruiz; Marcos J. Caballero-López; Ángela del Águila; Teresa Muñoz-Galdeano; Rodrigo M. Maza; Manuel Nieto-Díaz
Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (Ap4A) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes. In a search for efficient neuroprotective strategies for SCI, we have tested the capability of Ap4A to reduce the excitotoxic death mediated by the ATP-induced deregulation of calcium homeostasis and its consequences on tissue preservation and functional recovery in a mouse model of moderate contusive SCI. Our analyses with the murine neural cell line Neuro2a demonstrate that treatment with Ap4A reduces ATP-dependent excitotoxic death by both lowering the intracellular calcium response and decreasing the expression of specific purinergic receptors. Follow-up analyses in a mouse model of contusive SCI showed that acute administration of Ap4A following SCI reduces tissue damage and improves motor function recovery. These results suggest that Ap4A cytoprotection results from a decrease of the purinergic tone preventing the effects of a massive release of ATP after SCI, probably together with a direct induction of anti-apoptotic and pro-survival pathways via activation of P2Y2 proposed in previous studies. In conclusion, Ap4A may be a good candidate for an SCI therapy, particularly to reduce excitotoxicity in combination with other modulators and/or inhibitors of the excitotoxic process that are being tested.
Neuroscience | 2015
David Reigada; Manuel Nieto-Díaz; R Navarro-Ruiz; Marcos J. Caballero-López; A. del Águila; Teresa Muñoz-Galdeano; Rodrigo M. Maza
Secondary death of neural cells plays a key role in the physiopathology and the functional consequences of traumatic spinal cord injury (SCI). Pharmacological manipulation of cell death pathways leading to the preservation of neural cells is acknowledged as a main therapeutic goal in SCI. In the present work, we hypothesize that administration of the neuroprotective cell-permeable compound ucf-101 will reduce neural cell death during the secondary damage of SCI, increasing tissue preservation and reducing the functional deficits. To test this hypothesis, we treated mice with ucf-101 during the first week after a moderate contusive SCI. Our results reveal that ucf-101 administration protects neural cells from the deleterious secondary mechanisms triggered by the trauma, reducing the extension of tissue damage and improving motor function recovery. Our studies also suggest that the effects of ucf-101 may be mediated through the inhibition of HtrA2/OMI and the concomitant increase of inhibitor of apoptosis protein XIAP, as well as the induction of ERK1/2 activation and/or expression. In vitro assays confirm the effects of ucf-101 on both pathways as well as on the reduction of caspase cascade activation and apoptotic cell death in a neuroblastoma cell line. These results suggest that ucf-101 can be a promising therapeutic tool for SCI that deserves more detailed analyses.
Animal Production Science | 2013
M Nieto-Diaz; W Pita-Thomas; Rodrigo M. Maza; M Yunta-Gonzalez; Mj Lopez-Rodriguez; R Navarro-Ruiz; David Reigada; Cm Fernandez-Martos; Manuel Nieto-Sampedro
During their annual regeneration, antlers are innervated by trigeminal sensory axons growing at the highest rate recorded for any adult mammal. Previous analyses established the presence in the antler of nerve growth factor and neurotrophin 3 neurotrophins, which may underlie this rapid nerve growth. We are currently exploring the expression of other molecules that may be involved in such growth (axon growth promoters) combining several gene-expression techniques. Preliminary results indicate the expression of different growth promoters in the antler velvet, five of them not previously described in deer. The expression of these molecules as well as others described in the literature suggests that antler velvet promotes axon growth. However, most promoters expressed in the velvet are also present in unmodified deer skin. Thus, it must be asked why axons grow so fast in the antler? To answer that question, we developed a series of in vitro experiments using sensory neurons from adult and embryo rodents. These studies suggested that soluble proteins secreted by the velvet strongly promote neurite outgrowth. Using specific blocking antibodies, we demonstrated that nerve growth factor is partially responsible for these effects although other yet unidentified proteins seem also to be involved. The studies also showed that neither endocrine serum factors nor antler tissue substrate stimulate neurite outgrowth, although deep velvet layers cause neurite outgrowth orientation.
Frontiers in Cellular Neuroscience | 2018
Teresa Muñoz-Galdeano; David Reigada; Ángela del Águila; Irene Velez; Marcos J. Caballero-López; Rodrigo M. Maza; Manuel Nieto-Díaz
Autophagy is an essential process of cellular waist clearance that becomes altered following spinal cord injury (SCI). Details on these changes, including timing after injury, underlying mechanisms, and affected cells, remain controversial. Here we present a characterization of autophagy in the mice spinal cord before and after a contusive SCI. In the undamaged spinal cord, analysis of LC3 and Beclin 1 autophagic markers reveals important differences in basal autophagy between neurons, oligodendrocytes, and astrocytes and even within cell populations. Following moderate contusion, western blot analyses of LC3 indicates that autophagy increases to a maximum at 7 days post injury (dpi), whereas unaltered Beclin 1 expression and increase of p62 suggests a possible blockage of autophagosome clearance. Immunofluorescence analyses of LC3 and Beclin 1 provide additional details that reveal a complex, cell-specific scenario. Autophagy is first activated (1 dpi) in the severed axons, followed by a later (7 dpi) accumulation of phagophores and/or autophagosomes in the neuronal soma without signs of increased initiation. Oligodendrocytes and reactive astrocytes also accumulate phagophores and autophagosomes at 7 dpi, but whereas the accumulation in astrocytes is associated with an increased autophagy initiation, it seems to result from a blockage of the autophagic flux in oligodendrocytes. Comparison with previous studies highlights the complex and heterogeneous autophagic responses induced by the SCI, leading in many cases to contradictory results and interpretations. Future studies should consider this complexity in the design of therapeutic interventions based on the modulation of autophagy to treat SCI.
Biochimica et Biophysica Acta | 2017
Marcos J. Caballero-López; Manuel Nieto-Díaz; Mónica Yunta; David Reigada; Teresa Muñoz-Galdeano; Ángela del Águila; R Navarro-Ruiz; Wolfang Pita-Thomas; Dan Lindholm; Rodrigo M. Maza
Cell death depends on the balance between the activities of pro- and anti-apoptotic factors. X-linked inhibitor of apoptosis protein (XIAP) plays an important role in the cytoprotective process by inhibiting the caspase cascade and regulating pro-survival signaling pathways. While searching for novel interacting partners of XIAP, we identified Fas-associated factor 1 (FAF1). Contrary to XIAP, FAF1 is a pro-apoptotic factor that also regulates several signaling pathways in which XIAP is involved. However, the functional relationship between FAF1 and XIAP is unknown. Here, we describe a new interaction between XIAP and FAF1 and describe the functional implications of their opposing roles in cell death and NF-κB signaling. Our results clearly demonstrate the interaction of XIAP with FAF1 and define the specific region of the interaction. We observed that XIAP is able to block FAF1-mediated cell death by interfering with the caspase cascade and directly interferes in NF-κB pathway inhibition by FAF1. Furthermore, we show that XIAP promotes ubiquitination of FAF1. Conversely, FAF1 does not interfere with the anti-apoptotic activity of XIAP, despite binding to the BIR domains of XIAP; however, FAF1 does attenuate XIAP-mediated NF-κB activation. Altered expression of both factors has been implicated in degenerative and cancerous processes; therefore, studying the balance between XIAP and FAF1 in these pathologies will aid in the development of novel therapies.