Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo Osorno is active.

Publication


Featured researches published by Rodrigo Osorno.


Cell Stem Cell | 2012

Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells.

Nicola Festuccia; Rodrigo Osorno; Florian Halbritter; Violetta Karwacki-Neisius; Pablo Navarro; Douglas Colby; Frederick Wong; Adam Yates; Simon R. Tomlinson; Ian Chambers

Summary Embryonic stem cell (ESC) self-renewal efficiency is determined by the level of Nanog expression. However, the mechanisms by which Nanog functions remain unclear, and in particular, direct Nanog target genes are uncharacterized. Here we investigate ESCs expressing different Nanog levels and Nanog−/− cells with distinct functionally inducible Nanog proteins to identify Nanog-responsive genes. Surprisingly, these constitute a minor fraction of genes that Nanog binds. Prominent among Nanog-reponsive genes is Estrogen-related receptor b (Esrrb). Nanog binds directly to Esrrb, enhances binding of RNAPolII, and stimulates Esrrb transcription. Overexpression of Esrrb in ESCs maintains cytokine-independent self-renewal and pluripotency. Remarkably, this activity is retained in Nanog−/− ESCs. Moreover, Esrrb can reprogram Nanog−/− EpiSCs and can rescue stalled reprogramming in Nanog−/− pre-iPSCs. Finally, Esrrb deletion abolishes the defining ability of Nanog to confer LIF-independent ESC self-renewal. These findings are consistent with the functional placement of Esrrb downstream of Nanog.


Cell Stem Cell | 2013

Reduced Oct4 Expression Directs a Robust Pluripotent State with Distinct Signaling Activity and Increased Enhancer Occupancy by Oct4 and Nanog

Violetta Karwacki-Neisius; Jonathan Göke; Rodrigo Osorno; Florian Halbritter; Jia Hui Ng; Andrea Y. Weiße; Frederick Wong; Alessia Gagliardi; Nicholas P. Mullin; Nicola Festuccia; Douglas Colby; Simon R. Tomlinson; Huck-Hui Ng; Ian Chambers

Summary Embryonic stem cell (ESC) pluripotency is governed by a gene regulatory network centered on the transcription factors Oct4 and Nanog. To date, robust self-renewing ESC states have only been obtained through the chemical inhibition of signaling pathways or enforced transgene expression. Here, we show that ESCs with reduced Oct4 expression resulting from heterozygosity also exhibit a stabilized pluripotent state. Despite having reduced Oct4 expression, Oct4+/− ESCs show increased genome-wide binding of Oct4, particularly at pluripotency-associated enhancers, homogeneous expression of pluripotency transcription factors, enhanced self-renewal efficiency, and delayed differentiation kinetics. Cells also exhibit increased Wnt expression, enhanced leukemia inhibitory factor (LIF) sensitivity, and reduced responsiveness to fibroblast growth factor. Although they are able to maintain pluripotency in the absence of bone morphogenetic protein, removal of LIF destabilizes pluripotency. Our findings suggest that cells with a reduced Oct4 concentration range are maintained in a robust pluripotent state and that the wild-type Oct4 concentration range enables effective differentiation.


Cell Reports | 2012

In Vivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation

Yali Huang; Rodrigo Osorno; Anestis Tsakiridis; Valerie Wilson

Chimera formation after blastocyst injection or morula aggregation is the principal functional assay of the developmental potential of mouse embryonic stem cells (ESCs). This property, which demonstrates functional equivalence between ESCs and the preimplantation epiblast, is not shared by epiblast stem cell (EpiSC) lines. Here, we show that EpiSCs derived either from postimplantation embryos or from ESCs in vitro readily generate chimeras when grafted to postimplantation embryos in whole embryo culture. EpiSC derivatives integrate and differentiate to derivatives of all three embryonic germ layers and primordial germ cells. In contrast, grafted ESCs seldom proliferate in postimplantation embryos, and fail to acquire the identity of their host-derived neighbors. EpiSCs do not incorporate efficiently into embryonic day 8.5 embryos, a stage by which pluripotency has been lost. Thus, chimera formation by EpiSCs requires a permissive environment, the postimplantation epiblast, and demonstrates functional equivalence between this cell type and EpiSCs.


Development | 2014

Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors

Anestis Tsakiridis; Yali Huang; Guillaume Blin; Stavroula Skylaki; Filip J. Wymeersch; Rodrigo Osorno; Costas Economou; Eleni P. Karagianni; Suling Zhao; Sally Lowell; Valerie Wilson

During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.


The EMBO Journal | 2012

OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells.

Pablo Navarro; Nicola Festuccia; Douglas Colby; Alessia Gagliardi; Nicholas P. Mullin; Wensheng Zhang; Violetta Karwacki-Neisius; Rodrigo Osorno; David A. Kelly; Morag Robertson; Ian Chambers

NANOG, OCT4 and SOX2 form the core network of transcription factors supporting embryonic stem (ES) cell self‐renewal. While OCT4 and SOX2 expression is relatively uniform, ES cells fluctuate between states of high NANOG expression possessing high self‐renewal efficiency, and low NANOG expression exhibiting increased differentiation propensity. NANOG, OCT4 and SOX2 are currently considered to activate transcription of each of the three genes, an architecture that cannot readily account for NANOG heterogeneity. Here, we examine the architecture of the Nanog‐centred network using inducible NANOG gain‐ and loss‐of‐function approaches. Rather than activating itself, Nanog activity is autorepressive and OCT4/SOX2‐independent. Moreover, the influence of Nanog on Oct4 and Sox2 expression is minimal. Using Nanog:GFP reporters, we show that Nanog autorepression is a major regulator of Nanog transcription switching. We conclude that the architecture of the pluripotency gene regulatory network encodes the capacity to generate reversible states of Nanog transcription via a Nanog‐centred autorepressive loop. Therefore, cellular variability in self‐renewal efficiency is an emergent property of the pluripotency gene regulatory network.


Current Opinion in Genetics & Development | 2013

The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states

Nicola Festuccia; Rodrigo Osorno; Valerie Wilson; Ian Chambers

Pluripotency is a property that early embryonic cells possess over a considerable developmental time span. Accordingly, pluripotent cell lines can be established from the pre-implantation or post-implantation mouse embryo as embryonic stem (ES) or epiblast stem (EpiSC) cell lines, respectively. Maintenance of the pluripotent phenotype depends on the function of specific transcription factors (TFs) operating within a pluripotency gene regulatory network (PGRN). As cells move from an ES cell to an EpiSC state, the PGRN changes with expression of some TFs reduced (e.g. Nanog) or eliminated (e.g. Esrrb). Re-expressing such TFs can move cells back to an earlier developmental identity and is being applied to attempt establishment of human cell lines with the properties of mouse ES cells.


Philosophical Transactions of the Royal Society B | 2011

Transcription factor heterogeneity and epiblast pluripotency.

Rodrigo Osorno; Ian Chambers

Stem cells are defined by the simultaneous possession of the seemingly incongruent properties of self-renewal and multi-lineage differentiation potential. To maintain a stem cell population, these opposing forces must be balanced. Transcription factors that function to direct pluripotent cell identity are not all equally distributed throughout the pluripotent cell population. While Oct4 levels are relatively homogeneous, other transcription factors, such as Nanog, are more heterogeneously expressed. Moreover, Oct4 positive cells fluctuate between states of high Nanog expression associated with a high probability of self-renewal and low Nanog expression associated with an increased propensity to differentiate. As embryonic stem (ES) cells transit to the more developmentally advanced epiblast stem cell (EpiSC) state, the levels of pluripotency transcription factors are modulated. Such modulations are blunted in cells that overexpress Nanog and this may underlie the resistance of Nanog-overexpressing cells to transit to an EpiSC state. Interestingly, increasing the levels of Nanog in EpiSC can facilitate reversion to the ES cell state. Together these observations suggest that Nanog lies close to the top of the hierarchy of pluripotent transcription factor regulation.


Cell Reports | 2016

Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs

Damir Jacob Illich; Miao Zhang; Andrei Ursu; Rodrigo Osorno; Kee-Pyo Kim; Juyong Yoon; Marcos J. Araúzo-Bravo; Guangming Wu; Daniel Esch; Davood Sabour; Douglas Colby; Kathrin S. Grassme; Jiayu Chen; Boris Greber; Susanne Höing; Wiebke Herzog; Slava Ziegler; Ian Chambers; Shaorong Gao; Herbert Waldmann; Hans R. Schöler

Summary It has previously been reported that mouse epiblast stem cell (EpiSC) lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC) pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha) induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency. CK1alpha inhibition directly results in the simultaneous activation of the WNT signaling pathway, together with inhibition of the TGFbeta/SMAD2 signaling pathway, mediating the rewiring of the gene regulatory network in favor of an ESC-like state. Our findings uncover a molecular mechanism that links CK1alpha to ESC pluripotency through the direct modulation of WNT and TGFbeta signaling.


Journal of Cell Science | 2012

The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression

Rodrigo Osorno; Anestis Tsakiridis; Frederick Wong; Noemí Cambray; Constantinos Economou; Ron Wilkie; Guillaume Blin; Paul J. Scotting; Ian Chambers; Valerie Wilson

Collaboration


Dive into the Rodrigo Osorno's collaboration.

Top Co-Authors

Avatar

Ian Chambers

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge