Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo Perin is active.

Publication


Featured researches published by Rodrigo Perin.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A synaptic organizing principle for cortical neuronal groups

Rodrigo Perin; Thomas K. Berger; Henry Markram

Neuronal circuitry is often considered a clean slate that can be dynamically and arbitrarily molded by experience. However, when we investigated synaptic connectivity in groups of pyramidal neurons in the neocortex, we found that both connectivity and synaptic weights were surprisingly predictable. Synaptic weights follow very closely the number of connections in a group of neurons, saturating after only 20% of possible connections are formed between neurons in a group. When we examined the network topology of connectivity between neurons, we found that the neurons cluster into small world networks that are not scale-free, with less than 2 degrees of separation. We found a simple clustering rule where connectivity is directly proportional to the number of common neighbors, which accounts for these small world networks and accurately predicts the connection probability between any two neurons. This pyramidal neuron network clusters into multiple groups of a few dozen neurons each. The neurons composing each group are surprisingly distributed, typically more than 100 μm apart, allowing for multiple groups to be interlaced in the same space. In summary, we discovered a synaptic organizing principle that groups neurons in a manner that is common across animals and hence, independent of individual experiences. We speculate that these elementary neuronal groups are prescribed Lego-like building blocks of perception and that acquired memory relies more on combining these elementary assemblies into higher-order constructs.


Cell | 2015

Reconstruction and Simulation of Neocortical Microcircuitry

Henry Markram; Eilif Muller; Srikanth Ramaswamy; Michael W. Reimann; Marwan Abdellah; Carlos Aguado Sanchez; Anastasia Ailamaki; Lidia Alonso-Nanclares; Nicolas Antille; Selim Arsever; Guy Antoine Atenekeng Kahou; Thomas K. Berger; Ahmet Bilgili; Nenad Buncic; Athanassia Chalimourda; Giuseppe Chindemi; Jean Denis Courcol; Fabien Delalondre; Vincent Delattre; Shaul Druckmann; Raphael Dumusc; James Dynes; Stefan Eilemann; Eyal Gal; Michael Emiel Gevaert; Jean Pierre Ghobril; Albert Gidon; Joe W. Graham; Anirudh Gupta; Valentin Haenel

UNLABELLED We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP VIDEO ABSTRACT.


Nature Neuroscience | 2011

Ephaptic coupling of cortical neurons

Costas A. Anastassiou; Rodrigo Perin; Henry Markram; Christof Koch

The electrochemical processes that underlie neural function manifest themselves in ceaseless spatiotemporal field fluctuations. However, extracellular fields feed back onto the electric potential across the neuronal membrane via ephaptic coupling, independent of synapses. The extent to which such ephaptic coupling alters the functioning of neurons under physiological conditions remains unclear. To address this question, we stimulated and recorded from rat cortical pyramidal neurons in slices with a 12-electrode setup. We found that extracellular fields induced ephaptically mediated changes in the somatic membrane potential that were less than 0.5 mV under subthreshold conditions. Despite their small size, these fields could strongly entrain action potentials, particularly for slow (<8 Hz) fluctuations of the extracellular field. Finally, we simultaneously measured from up to four patched neurons located proximally to each other. Our findings indicate that endogenous brain activity can causally affect neural function through field effects under physiological conditions.


Frontiers in Neuroanatomy | 2013

Computing the size and number of neuronal clusters in local circuits

Rodrigo Perin; Martin Telefont; Henry Markram

The organization of connectivity in neuronal networks is fundamental to understanding the activity and function of neural networks and information processing in the brain. Recent studies show that the neocortex is not only organized in columns and layers but also, within these, into synaptically connected clusters of neurons (Ko et al., 2011; Perin et al., 2011). The recently discovered common neighbor rule, according to which the probability of any two neurons being synaptically connected grows with the number of their common neighbors, is an organizing principle for this local clustering. Here we investigated the theoretical constraints for how the spatial extent of neuronal axonal and dendritic arborization, heretofore described by morphological reach, the density of neurons and the size of the network determine cluster size and numbers within neural networks constructed according to the common neighbor rule. In the formulation we developed, morphological reach, cell density, and network size are sufficient to estimate how many neurons, on average, occur in a cluster and how many clusters exist in a given network. We find that cluster sizes do not grow indefinitely as network parameters increase, but tend to characteristic limiting values.


PLOS Biology | 2010

Brief Bursts Self-Inhibit and Correlate the Pyramidal Network

Thomas K. Berger; Gilad Silberberg; Rodrigo Perin; Henry Markram

A multi-cell patch clamp study reveals the summation properties of frequency-dependent disynaptic inhibition between neocortical pyramidal cells and shows how brief bursts of activity in a few cells can synchronize the entire microcircuit.


The Journal of Physiology | 2009

Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex

Thomas K. Berger; Rodrigo Perin; Gilad Silberberg; Henry Markram

The general structure of the mammalian neocortex is remarkably similar across different cortical areas. Despite certain cytoarchitectural specializations and deviations from the general blueprint, the principal organization of the neocortex is relatively uniform. It is not known, however, to what extent stereotypic synaptic pathways resemble each other between cortical areas, and how far they might reflect possible functional uniformity or specialization. Here, we show that frequency‐dependent disynaptic inhibition (FDDI) is a generic circuit motif that is present in all neocortical areas we investigated (primary somatosensory, auditory and motor cortex, secondary visual cortex and medial prefrontal cortex of the developing rat). We did find, however, area‐specific differences in occurrence and kinetics of FDDI and the short‐term dynamics of monosynaptic connections between pyramidal cells (PCs). Connectivity between PCs, both monosynaptic and via FDDI, is higher in primary cortices. The long‐term effectiveness of FDDI is likely to be limited by an activity‐dependent attenuation of the PC–interneuron synaptic transmission. Our results suggest that the basic construction of neocortical synaptic pathways follows principles that are independent of modality or hierarchical order within the neocortex.


Frontiers in Computational Neuroscience | 2017

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function

Michael W. Reimann; Max Nolte; Martina Scolamiero; Katharine Turner; Rodrigo Perin; Giuseppe Chindemi; Paweł Dłotko; Ran Levi; Kathryn Hess; Henry Markram

The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.A recent publication provides the network graph for a neocortical microcircuit comprising 8 million connections between 31,000 neurons. Since traditional graph-theoretical methods may not be sufficient to understand the immense complexity of such a biological network, we explored whether methods from algebraic topology could provide a new perspective on its structural and functional organization. Structural topological analysis revealed that directed graphs representing connectivity among neurons in the microcircuit deviated significantly from different varieties of randomized graph. In particular, the directed graphs contained in the order of 10 simplices groups of neurons with all-to-all directed connectivity. Some of these simplices contained up to 8 neurons, making them the most extreme neuronal clustering motif ever reported. Functional topological analysis of simulated neuronal activity in the microcircuit revealed novel spatio-temporal metrics that provide an effective classification of functional responses to qualitatively different stimuli. This study represents the first algebraic topological analysis of structural connectomics and connectomics-based spatio-temporal activity in a biologically realistic neural microcircuit. The methods used in the study show promise for more general applications in network science.


Journal of Neurophysiology | 2015

Cell-type- and activity-dependent extracellular correlates of intracellular spiking

Constantinos Anastassiou; Rodrigo Perin; György Buzsáki; Henry Markram; Christof Koch

Despite decades of extracellular action potential (EAP) recordings monitoring brain activity, the biophysical origin and inherent variability of these signals remain enigmatic. We performed whole cell patch recordings of excitatory and inhibitory neurons in rat somatosensory cortex slice while positioning a silicon probe in their vicinity to concurrently record intra- and extracellular voltages for spike frequencies under 20 Hz. We characterize biophysical events and properties (intracellular spiking, extracellular resistivity, temporal jitter, etc.) related to EAP recordings at the single-neuron level in a layer-specific manner. Notably, EAP amplitude was found to decay as the inverse of distance between the soma and the recording electrode with similar (but not identical) resistivity across layers. Furthermore, we assessed a number of EAP features and their variability with spike activity: amplitude (but not temporal) features varied substantially (∼ 30-50% compared with mean) and nonmonotonically as a function of spike frequency and spike order. Such EAP variation only partly reflects intracellular somatic spike variability and points to the plethora of processes contributing to the EAP. Also, we show that the shape of the EAP waveform is qualitatively similar to the negative of the temporal derivative to the intracellular somatic voltage, as expected from theory. Finally, we tested to what extent EAPs can impact the lowpass-filtered part of extracellular recordings, the local field potential (LFP), typically associated with synaptic activity. We found that spiking of excitatory neurons can significantly impact the LFP at frequencies as low as 20 Hz. Our results question the common assertion that the LFP acts as proxy for synaptic activity.


Journal of Visualized Experiments | 2013

A computer-assisted multi-electrode patch-clamp system.

Rodrigo Perin; Henry Markram

The patch-clamp technique is today the most well-established method for recording electrical activity from individual neurons or their subcellular compartments. Nevertheless, achieving stable recordings, even from individual cells, remains a time-consuming procedure of considerable complexity. Automation of many steps in conjunction with efficient information display can greatly assist experimentalists in performing a larger number of recordings with greater reliability and in less time. In order to achieve large-scale recordings we concluded the most efficient approach is not to fully automatize the process but to simplify the experimental steps and reduce the chances of human error while efficiently incorporating the experimenters experience and visual feedback. With these goals in mind we developed a computer-assisted system which centralizes all the controls necessary for a multi-electrode patch-clamp experiment in a single interface, a commercially available wireless gamepad, while displaying experiment related information and guidance cues on the computer screen. Here we describe the different components of the system which allowed us to reduce the time required for achieving the recording configuration and substantially increase the chances of successfully recording large numbers of neurons simultaneously.


Frontiers in Neural Circuits | 2011

Innate neural assemblies for lego memory

Henry Markram; Rodrigo Perin

Reference EPFL-ARTICLE-183381doi:10.3389/fncir.2011.00006View record in PubMedView record in Web of Science Record created on 2013-01-28, modified on 2017-05-12

Collaboration


Dive into the Rodrigo Perin's collaboration.

Top Co-Authors

Avatar

Henry Markram

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Thomas K. Berger

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michael W. Reimann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Christof Koch

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Chindemi

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Kathryn Hess

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Marwan Abdellah

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Srikanth Ramaswamy

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Costas A. Anastassiou

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge