Rodrigo Valladares Linares
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo Valladares Linares.
Water Research | 2011
Rodrigo Valladares Linares; Victor Yangali-Quintanilla; Zhenyu Li; Gary L. Amy
As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants.
Desalination and Water Treatment | 2013
Rodrigo Valladares Linares; Zhenyu Li; Victor Yangali-Quintanilla; Qingyu Li; Gary L. Amy
Abstract Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of foul...
Water Research | 2016
Amber Siddiqui; Nadia Farhat; Szilard Bucs; Rodrigo Valladares Linares; Cristian Picioreanu; Joop C. Kruithof; Mark C.M. van Loosdrecht; James Kidwell; J.S. Vrouwenvelder
Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as the first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydrodynamic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydrodynamic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound NF and RO membrane systems. The proposed strategy may also be suitable to develop spacers in e.g. forward osmosis (FO), reverse electrodialysis (RED), membrane distillation (MD), and electrodeionisation (EDI) membrane systems.
Water Research | 2014
Zhenyu Li; Rodrigo Valladares Linares; Muhannad Abu-Ghdaib; Tong Zhan; Victor Yangali-Quintanilla; Gary L. Amy
An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus.
Water Research | 2015
Szilard Bucs; Rodrigo Valladares Linares; Jeremy Marston; A.I. Radu; J.S. Vrouwenvelder; Cristian Picioreanu
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.
Water Research | 2016
Szilard Bucs; Rodrigo Valladares Linares; J.S. Vrouwenvelder; Cristian Picioreanu
This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling.
Desalination and Water Treatment | 2016
Szilard Bucs; Nadia Farhat; Amber Siddiqui; Rodrigo Valladares Linares; A.I. Radu; Joop C. Kruithof; J.S. Vrouwenvelder
AbstractSystematic laboratory studies on membrane biofouling require experimental conditions that are well defined and representative for practice. Hydrodynamics and flow rate variations affect biofilm formation, morphology, and detachment and impacts on membrane performance parameters such as feed channel pressure drop. There is a suite of available monitors to study biofouling, but systems to operate monitors have not been well designed to achieve an accurate, constant water flow required for a reliable determination of biomass accumulation and feed channel pressure drop increase. Studies were done with membrane fouling simulators operated in parallel with manual and automated flow control, with and without dosage of a biodegradable substrate to the feedwater to enhance biofouling rate. High flow rate variations were observed for the manual water flow system (up to ≈9%) compared to the automatic flow control system (<1%). The flow rate variation in the manual system was strongly increased by biofilm acc...
Archive | 2018
Rodrigo Valladares Linares; Lijo Francis
Abstract Oasys Water developed the first membrane brine concentrator (MBC) employing ammonia and carbon dioxide-based draw solution to treat high salinity brine streams and wastewater, using a forward osmosis (FO) process, producing a high quality permeate water that can be reused in any industrial process. According to Oasys Water, they are the only FO provider that develops all three key components of its systems: optimized and patented FO membranes, powerful draw solution chemistries, and highly efficient draw solution recovery systems. In the last few years, Oasys Water has been testing pilot units in three different facilities, with promising results in the treatment of industrial wastewater, which validate the viability of the product: i) Pennsylvania based Marcellus Shale plant, used to treat highly variable water, product of large volumes of frac flowback and water with high concentrations of total dissolved solids (TDS) from natural gas extraction, ii) the testing facility in Permian Basin at Midland, Texas, testing high TDS water from oil and gas operations, and iii) Changxing Power Plant pilot unit, the world’s first commercial application of FO-based zero liquid discharge (ZLD). Several advantages of the use of Oasys Water FO technology have been demonstrated, such as the ability to concentrate brines up to a high TDS concentration for further processing in a crystallizer, lower capital costs compared to evaporative ZLD technologies, reduced energy requirements and the elimination of thermal scaling concerns.
Archive | 2018
Zhenyu Li; Rodrigo Valladares Linares; Sarper Sarp; Gary L. Amy
Abstract Forward osmosis (FO) is an emerging membrane technology with a range of possible water treatment applications including desalination. The FO process itself can directly desalt seawater as a feed solution by employing a draw solution with higher osmotic pressure than seawater. However, the energetics of product water recovery and draw solution reuse is not favorable. Alternatively, the FO process using seawater as a natural draw solution and quality-impaired water as the feed can potentially couple with low-pressure reverse osmosis as a hybrid to be a lower-energy desalination process, in which indirect desalination is achieved. Most organic fouling in FO desalination process is reversible. However, the mechanism of scaling formation in FO desalination is more complicated than the conventional RO process. Both feed and draw solution can influence the scaling formation and its reversibility. The economic feasibility of FO desalination process depends on the operational mode (direct and indirect) as well as the plant scale and level of commercialization. Although there are still some choke points in the current deployment of FO desalination, the future development of efficient draw solution and novel FO membrane will significantly promote FO desalination technology.
Water intelligence online | 2017
Rodrigo Valladares Linares; Zhenyu Li; Menachem Elimelech; Gary L. Amy; Hans Vrouwenvelder
Recent Developments in Forward Osmosis Processes provides an overview of applications, advantages, challenges, costs and current knowledge gaps. Commercial technology, hybrid FO systems for both desalination and water recovery applications have shown to have higher capital cost compared to conventional technologies. Nevertheless, due to the demonstrated lower operational costs of hybrid FO systems, the unit cost for each m3 of fresh water produced with the FO system are lower than conventional desalination/water recovery technologies (i.e. ultrafiltration/RO systems).