Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roel Deckers is active.

Publication


Featured researches published by Roel Deckers.


Advanced Drug Delivery Reviews | 2014

Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms ☆

Ine Lentacker; I. De Cock; Roel Deckers; S.C. De Smedt; Chrit Moonen

In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.


Journal of Controlled Release | 2010

Ultrasound triggered, image guided, local drug delivery.

Roel Deckers; Chrit Moonen

Ultrasound allows the deposition of thermal and mechanical energies deep inside the human body in a non-invasive way. Ultrasound can be focused within a region with a diameter of about 1mm. The bio-effects of ultrasound can lead to local tissue heating, cavitation, and radiation force, which can be used for 1) local drug release from nanocarriers circulating in the blood, 2) increased extravasation of drugs and/or carriers, and 3) enhanced diffusivity of drugs. When using nanocarriers sensitive to mechanical forces (the oscillating ultrasound pressure waves) and/or sensitive to temperature, the content of the nanocarriers can be released locally. Thermo-sensitive liposomes have been suggested for local drug release in combination with local hyperthermia more than 25 years ago. Microbubbles may be designed specifically to enhance cavitation effects. Real-time imaging methods, such as magnetic resonance, optical and ultrasound imaging have led to novel insights and methods for ultrasound triggered drug delivery. Image guidance of ultrasound can be used for: 1) target identification and characterization; 2) spatio-temporal guidance of actions to release or activate the drugs and/or permeabilize membranes; 3) evaluation of bio-distribution, pharmacokinetics and pharmacodynamics; and 4) physiological read-outs to evaluate the therapeutic efficacy.


CardioVascular and Interventional Radiology | 2013

MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform.

Laura G. Merckel; Lambertus W. Bartels; Max O. Köhler; H J G Desirée van den Bongard; Roel Deckers; Willem P. Th. M. Mali; Christoph A. Binkert; Chrit Moonen; Kenneth G. A. Gilhuijs; Maurice A. A. J. van den Bosch

Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Image-guided, noninvasive, spatiotemporal control of gene expression

Roel Deckers; Bruno Quesson; Josette Arsaut; Sandrine Eimer; Franck Couillaud; Chrit Moonen

Spatiotemporal control of transgene expression is of paramount importance in gene therapy. Here, we demonstrate the use of magnetic resonance temperature imaging (MRI)-guided, high-intensity focused ultrasound (HIFU) in combination with a heat-inducible promoter [heat shock protein 70 (HSP70)] for the in vivo spatiotemporal control of transgene activation. Local gene activation induced by moderate hyperthermia in a transgenic mouse expressing luciferase under the control of the HSP70 promoter showed a high similarity between the local temperature distribution in vivo and the region emitting light. Modulation of gene expression is possible by changing temperature, duration, and location of regional heating. Mild heating protocols (2 min at 43°C) causing no tissue damage were sufficient for significant gene activation. The HSP70 promoter was shown to be induced by the local temperature increase and not by the mechanical effects of ultrasound. Therefore, the combination of MRI-guided HIFU heating and transgenes under control of heat-inducible HSP promoter provides a direct, noninvasive, spatial control of gene expression via local hyperthermia.


Cancer Imaging | 2012

Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours.

Joost W. Wijlemans; Lambertus W. Bartels; Roel Deckers; Mario Ries; W.P.T.M. Mali; Chrit Moonen; van den Bosch Ma

Abstract Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation.


Journal of Controlled Release | 2014

Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.

Benjamin Theek; Felix Gremse; Sijumon Kunjachan; Stanley Fokong; Robert Pola; Michal Pechar; Roel Deckers; Gert Storm; Josef Ehling; Fabian Kiessling; Twan Lammers

The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of <0.02. These findings indicate that ceUS can be used to characterize and predict EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments.


Journal of Controlled Release | 2013

Evidence for a new mechanism behind HIFU-triggered release from liposomes.

Chris Oerlemans; Roel Deckers; Gert Storm; Wim E. Hennink; J. Frank W. Nijsen

A promising approach for local drug delivery is high-intensity focused ultrasound (HIFU)-triggered release of drugs from stimuli-responsive nanoparticles such as liposomes. The aim of this study was to investigate whether another release mechanism is involved with HIFU-triggered release from liposomes beside cavitation and temperature. Furthermore, it was studied whether this new release mechanism allows the release of lipophilic compounds. Therefore, both a lipophilic (Nile red) and a hydrophilic (fluorescein) compound were loaded into thermosensitive (TSL) or non-thermosensitive liposomes (NTSL) and the liposomes were subjected both to continuous wave (CW)- and pulsed wave (PW)-HIFU. The mean liposome size varied from 97 to 139 nm with a polydispersity index (PDI)≤0.06 for the different formulations. The Tm of the phospholipid bilayer of the TSL was around 42°C. Approximately 80% of fluorescein was released within 15 min from TSL at temperatures≥42°C. In contrast, no fluorescein release from NTSL and NR release from both TSL and NTSL was observed at temperatures up to 60 °C. CW-HIFU exposure of TSL resulted in rapid temperature elevation up to 52°C and subsequently almost quantitative fluorescein release. Fluorescein release from NTSL was also substantial (~64% after 16 min at 20 W). Surprisingly, CW-HIFU exposure (20W for 16 min) resulted in the release of NR from TSL (~66% of the loaded amount), and this was even higher from NTSL (~78%). PW-HIFU exposure did not result in temperatures above the Tm of TSL. However, nearly 85% of fluorescein was released from TSL after 32 min at 20W of PW-HIFU exposure, whereas the release from NTSL was around 27%. Interestingly, NR release from NTSL was~30% after 2 min PW-HIFU exposure and increased to~70% after 32 min. Furthermore, addition of microbubbles to the liposomes prior to PW-HIFU exposure did not result in more release, which suggests that cavitation can be excluded as the main mechanism responsible for the triggered release of both a hydrophilic and a lipophilic model compound from liposomes. Dynamic light scattering analysis showed that the mean size and PDI of the liposomes did not significantly change after CW- and PW-HIFU exposure. Taken together, it is therefore concluded that neither temperature elevation nor inertial cavitation is essential for the release of both hydrophilic and lipophilic compounds from liposomes. It is assumed that the release originates from radiation force-induced acoustic streaming, causing the liposomes to collide at the walls of the exposure chamber leading to shear forces which in turn results in reversible liposome destabilization and release of both hydrophilic and lipophilic compounds.


Magnetic Resonance in Medicine | 2014

In vivo T2‐based MR thermometry in adipose tissue layers for high‐intensity focused ultrasound near‐field monitoring

Paul Baron; Mario Ries; Roel Deckers; Martijn de Greef; Jukka Tanttu; Max O. Köhler; Max A. Viergever; Chrit Moonen; Lambertus W. Bartels

During MR‐guided high‐intensity focused ultrasound (HIFU) therapy, ultrasound absorption in the near field represents a safety risk and limits efficient energy deposition at the target. In this study, we investigated the feasibility of using T2 mapping to monitor the temperature change in subcutaneous adipose tissue layers.


Frontiers in Pharmacology | 2015

Sonochemotherapy : From bench to bedside

Bart Lammertink; Clemens Bos; Roel Deckers; Gert Storm; Chrit Moonen; Jean-Michel Escoffre

The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy.


Biomacromolecules | 2014

Triggered Release of Doxorubicin from Temperature-Sensitive Poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) Grafted Liposomes

Merel van Elk; Roel Deckers; Chris Oerlemans; Yang Shi; Gerrit Storm; Tina Vermonden; Wim E. Hennink

The objective of this study was to design temperature-sensitive liposomes with tunable release characteristics that release their content at an elevated temperature generated by high intensity focused ultrasound (HIFU) exposure. To this end, thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate of different molecular weights and composition with a cholesterol anchor (chol-pHPMAlac) were synthesized and grafted onto liposomes loaded with doxorubicin (DOX). The liposomes were incubated at different temperatures and their release kinetics were studied. A good correlation between the release-onset temperature of the liposomes and the cloud point (CP) of chol-pHPMAlac was found. However, release took place at significantly higher temperatures than the CP of chol-pHPMAlac, likely at the CP, the dehydration and thus hydrophobicity is insufficient to penetrate and permeabilize the liposomal membrane. Liposomes grafted with chol-pHPMAlac with a CP of 11.5 °C released 89% DOX within 5 min at 42 °C while for the liposomes grafted with a polymer with CP of 25.0 °C, a temperature of 52 °C was needed to obtain the same extent of DOX release. At a fixed copolymer composition, an increase in molecular weight from 6.5 to 14.5 kDa decreased the temperature at which DOX was released with a release-onset temperature from 52 to 42 °C. Liposomes grafted with 5% chol-pHPMAlac exhibited a rapid release to a temperature increase, while at a grafting density of 2 and 10%, the liposomes were less sensitive to an increase in temperature. Sequential release of DOX was obtained by mixing liposomes grafted with chol-pHPMAlac having different CPs. Chol-pHPMAlac grafted liposomes released DOX nearly quantitatively after pulsed wave HIFU. In conclusion, the release of DOX from liposomes grafted with thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate can be tuned to the characteristics and the grafting density of chol-pHPMAlac, making these liposomes attractive for local drug delivery using hyperthermia.

Collaboration


Dive into the Roel Deckers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge