Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roel M. Willems is active.

Publication


Featured researches published by Roel M. Willems.


Psychological Science | 2010

Body-Specific Representations of Action Verbs: Neural Evidence From Right- and Left-Handers

Roel M. Willems; Peter Hagoort; Daniel Casasanto

According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action of throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating one’s own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis, we used functional magnetic resonance imaging to compare premotor activity correlated with action verb understanding in right- and left-handers. Right-handers preferentially activated the left premotor cortex during lexical decisions on manual-action verbs (compared with nonmanual-action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body specific: Right- and left-handers, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.


Journal of Cognitive Neuroscience | 2010

Neural dissociations between action verb understanding and motor imagery

Roel M. Willems; Ivan Toni; Peter Hagoort; Daniel Casasanto

According to embodied theories of language, people understand a verb like throw, at least in part, by mentally simulating throwing. This implicit simulation is often assumed to be similar or identical to motor imagery. Here we used fMRI to test whether implicit simulations of actions during language understanding involve the same cortical motor regions as explicit motor imagery. Healthy participants were presented with verbs related to hand actions (e.g., to throw) and nonmanual actions (e.g., to kneel). They either read these verbs (lexical decision task) or actively imagined performing the actions named by the verbs (imagery task). Primary motor cortex showed effector-specific activation during imagery, but not during lexical decision. Parts of premotor cortex distinguished manual from nonmanual actions during both lexical decision and imagery, but there was no overlap or correlation between regions activated during the two tasks. These dissociations suggest that implicit simulation and explicit imagery cued by action verbs may involve different types of motor representations and that the construct of “mental simulation” should be distinguished from “mental imagery” in embodied theories of language.


NeuroImage | 2009

Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language

Roel M. Willems; Peter Hagoort

Several studies indicate that both posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG) and left inferior frontal gyrus (LIFG) are involved in integrating information from different modalities. Here we investigated the respective roles of these two areas in integration of action and language information. We exploited the fact that the semantic relationship between language and different forms of action (i.e. co-speech gestures and pantomimes) is radically different. Speech and co-speech gestures are always produced together, and gestures are not unambiguously understood without speech. On the contrary, pantomimes are not necessarily produced together with speech and can be easily understood without speech. We presented speech together with these two types of communicative hand actions in matching or mismatching combinations to manipulate semantic integration load. Left and right pSTS/MTG were only involved in semantic integration of speech and pantomimes. Left IFG on the other hand was involved in integration of speech and co-speech gestures as well as of speech and pantomimes. Effective connectivity analyses showed that depending upon the semantic relationship between language and action, LIFG modulates activation levels in left pSTS. This suggests that integration in pSTS/MTG involves the matching of two input streams for which there is a relatively stable common object representation, whereas integration in LIFG is better characterized as the on-line construction of a new and unified representation of the input streams. In conclusion, pSTS/MTG and LIFG are differentially involved in multimodal integration, crucially depending upon the semantic relationship between the input streams.


Frontiers in Psychology | 2011

Flexibility in embodied language understanding.

Roel M. Willems; Daniel Casasanto

Do people use sensori-motor cortices to understand language? Here we review neurocognitive studies of language comprehension in healthy adults and evaluate their possible contributions to theories of language in the brain. We start by sketching the minimal predictions that an embodied theory of language understanding makes for empirical research, and then survey studies that have been offered as evidence for embodied semantic representations. We explore four debated issues: first, does activation of sensori-motor cortices during action language understanding imply that action semantics relies on mirror neurons? Second, what is the evidence that activity in sensori-motor cortices plays a functional role in understanding language? Third, to what extent do responses in perceptual and motor areas depend on the linguistic and extra-linguistic context? And finally, can embodied theories accommodate language about abstract concepts? Based on the available evidence, we conclude that sensori-motor cortices are activated during a variety of language comprehension tasks, for both concrete and abstract language. Yet, this activity depends on the context in which perception and action words are encountered. Although modality-specific cortical activity is not a sine qua non of language processing even for language about perception and action, sensori-motor regions of the brain appear to make functional contributions to the construction of meaning, and should therefore be incorporated into models of the neurocognitive architecture of language.


Cerebral Cortex | 2010

Cerebral Lateralization of Face-Selective and Body-Selective Visual Areas Depends on Handedness

Roel M. Willems; Mauritius V. Peelen; Peter Hagoort

The left-hemisphere dominance for language is a core example of the functional specialization of the cerebral hemispheres. The degree of left-hemisphere dominance for language depends on hand preference: Whereas the majority of right-handers show left-hemispheric language lateralization, this number is reduced in left-handers. Here, we assessed whether handedness analogously has an influence upon lateralization in the visual system. Using functional magnetic resonance imaging, we localized 4 more or less specialized extrastriate areas in left- and right-handers, namely fusiform face area (FFA), extrastriate body area (EBA), fusiform body area (FBA), and human motion area (human middle temporal [hMT]). We found that lateralization of FFA and EBA depends on handedness: These areas were right lateralized in right-handers but not in left-handers. A similar tendency was observed in FBA but not in hMT. We conclude that the relationship between handedness and hemispheric lateralization extends to functionally lateralized parts of visual cortex, indicating a general coupling between cerebral lateralization and handedness. Our findings indicate that hemispheric specialization is not fixed but can vary considerably across individuals even in areas engaged relatively early in the visual system.


Frontiers in Human Neuroscience | 2009

Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

Roel M. Willems; Ivan Toni; Peter Hagoort; Daniel Casasanto

If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009). During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participants motor habits, not just an abstract representation at the level of the actions goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.


Psychological Science | 2010

A dissociation between linguistic and communicative abilities in the human brain

Roel M. Willems; Miriam de Boer; Jan de Ruiter; Matthijs Leendert Noordzij; Peter Hagoort; Ivan Toni

Although language is an effective vehicle for communication, it is unclear how linguistic and communicative abilities relate to each other. Some researchers have argued that communicative message generation involves perspective taking (mentalizing), and—crucially—that mentalizing depends on language. We employed a verbal communication paradigm to directly test whether the generation of a communicative action relies on mentalizing and whether the cerebral bases of communicative message generation are distinct from parts of cortex sensitive to linguistic variables. We found that dorsomedial prefrontal cortex, a brain area consistently associated with mentalizing, was sensitive to the communicative intent of utterances, irrespective of linguistic difficulty. In contrast, left inferior frontal cortex, an area known to be involved in language, was sensitive to the linguistic demands of utterances, but not to communicative intent. These findings show that communicative and linguistic abilities rely on cerebrally (and computationally) distinct mechanisms.


Frontiers in Human Neuroscience | 2010

Neural insights into the relation between language and communication

Roel M. Willems; Rosemary Varley

The human capacity to communicate has been hypothesized to be causally dependent upon language. Intuitively this seems plausible since most communication relies on language. Moreover, intention recognition abilities (as a necessary prerequisite for communication) and language development seem to co-develop. Here we review evidence from neuroimaging as well as from neuropsychology to evaluate the relationship between communicative and linguistic abilities. Our review indicates that communicative abilities are best considered as neurally distinct from language abilities. This conclusion is based upon evidence showing that humans rely on different cortical systems when designing a communicative message for someone else as compared to when performing core linguistic tasks, as well as upon observations of individuals with severe language loss after extensive lesions to the language system, who are still able to perform tasks involving intention understanding.


Frontiers in Psychology | 2013

Independence of valence and reward in emotional word processing: Electrophysiological evidence

Laura Kaltwasser; Stéphanie Riès; Werner Sommer; Robert T. Knight; Roel M. Willems

Both emotion and reward are primary modulators of cognition: emotional word content enhances word processing, and reward expectancy similarly amplifies cognitive processing from the perceptual up to the executive control level. Here, we investigate how these primary regulators of cognition interact. We studied how the anticipation of gain or loss modulates the neural time course (event-related potentials, ERPs) related to processing of emotional words. Participants performed a semantic categorization task on emotional and neutral words, which were preceded by a cue indicating that performance could lead to monetary gain or loss. Emotion-related and reward-related effects occurred in different time windows, did not interact statistically, and showed different topographies. This speaks for an independence of reward expectancy and the processing of emotional word content. Therefore, privileged processing given to emotionally valenced words seems immune to short-term modulation of reward. Models of language comprehension should be able to incorporate effects of reward and emotion on language processing, and the current study argues for an architecture in which reward and emotion do not share a common neurobiological mechanism.


Neuropsychologia | 2011

Communicating without a functioning language system: Implications for the role of language in mentalizing

Roel M. Willems; Yael Benn; Peter Hagoort; Ivan Toni; Rosemary Varley

A debated issue in the relationship between language and thought is how our linguistic abilities are involved in understanding the intentions of others (mentalizing). The results of both theoretical and empirical work have been used to argue that linguistic, and more specifically, grammatical, abilities are crucial in representing the mental states of others. Here we contribute to this debate by investigating how damage to the language system influences the generation and understanding of intentional communicative behaviors. Four patients with pervasive language difficulties (severe global or agrammatic aphasia) engaged in an experimentally controlled non-verbal communication paradigm, which required signaling and understanding a communicative message. Despite their profound language problems they were able to engage in recipient design as well as intention recognition, showing similar indicators of mentalizing as have been observed in the neurologically healthy population. Our results show that aspects of the ability to communicate remain present even when core capacities of the language system are dysfunctional.

Collaboration


Dive into the Roel M. Willems's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Toni

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Stefan Maubach

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Wenhua Zhao

Illinois State University

View shared research outputs
Top Co-Authors

Avatar

Arno van den Essen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antal van den Bosch

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge