Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roel Maes is active.

Publication


Featured researches published by Roel Maes.


hardware oriented security and trust | 2008

Extended abstract: The butterfly PUF protecting IP on every FPGA

Sandeep S. Kumar; Jorge Guajardo; Roel Maes; Geert-Jan Schrijen; Pim Tuyls

IP protection of hardware designs is the most important requirement for many FPGA IP vendors. To this end, various solutions have been proposed by FPGA manufacturers based on the idea of bitstream encryption. An alternative solution was advocated in (E. Simpson and P. Schaumont, 2006). Simpson and Schaumont proposed a new approach based on physical unclonable functions (PUFs) for IP protection on FPGAs. PUFs are a unique class of physical systems that extract secrets from complex physical characteristics of the integrated circuits which along with the properties of unclonability provide a highly secure means of generating volatile secret keys for cryptographic operations. However, the first practical PUF on an FPGA was proposed only later in (J. Guajardo et al., 2007) based on the startup values of embedded SRAM memories which are intrinsic in some of the current FPGAs. The disadvantage of these intrinsic SRAM PUFs is that not all FPGAs support uninitialized SRAM memory. In this paper, we propose a new PUF structure called the butterfly PUF that can be used on all types of FPGAs. We also present experimental results showing their identification and key generation capabilities.


Towards Hardware-Intrinsic Security | 2010

Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions

Roel Maes; Ingrid Verbauwhede

The idea of using intrinsic random physical features to identify objects, systems, and people is not new. Fingerprint identification of humans dates at least back to the nineteenth century [21] and led to the field of biometrics. In the 1980s and 1990s of the twentieth century, random patterns in paper and optical tokens were used for unique identification of currency notes and strategic arms [2, 8, 53]. A formalization of this concept was introduced in the very beginning of the twenty-first century, first as physical one-way functions [41, 42], physical random functions [13], and finally as physical(ly) unclonable functions or PUFs.1 In the years following this introduction, an increasing number of new types of PUFs were proposed, with a tendency toward more integrated constructions. The practical relevance of PUFs for security applications was recognized from the start, with a special focus on the promising properties of physical unclonability and tamper evidence.


cryptographic hardware and embedded systems | 2012

PUFKY: a fully functional PUF-based cryptographic key generator

Roel Maes; Anthony Van Herrewege; Ingrid Verbauwhede

We present PUFKY: a practical and modular design for a cryptographic key generator based on a Physically Unclonable Function (PUF). A fully functional reference implementation is developed and successfully evaluated on a substantial set of FPGA devices. It uses a highly optimized ring oscillator PUF (ROPUF) design, producing responses with up to 99% entropy. A very high key reliability is guaranteed by a syndrome construction secure sketch using an efficient and extremely low-overhead BCH decoder. This first complete implementation of a PUF-based key generator, including a PUF, a BCH decoder and a cryptographic entropy accumulator, utilizes merely 17% (1162slices) of the available resources on a low-end FPGA, of which 82% are occupied by the ROPUF and only 18% by the key generation logic. PUFKY is able to produce a cryptographically secure 128-bit key with a failure rate <10−9 in 5.62ms. The designs modularity allows for rapid and scalable adaptations for other PUF implementations or for alternative key requirements. The presented PUFKY core is immediately deployable in an embedded system, e.g. by connecting it to an embedded microcontroller through a convenient bus interface.


ieee symposium on security and privacy | 2011

A Formalization of the Security Features of Physical Functions

Frederik Armknecht; Roel Maes; Ahmad-Reza Sadeghi; François-Xavier Standaert; Christian Wachsmann

Physical attacks against cryptographic devices typically take advantage of information leakage (e.g., side-channels attacks) or erroneous computations (e.g., fault injection attacks). Preventing or detecting these attacks has become a challenging task in modern cryptographic research. In this context intrinsic physical properties of integrated circuits, such as Physical(ly) Unclonable Functions~(PUFs), can be used to complement classical cryptographic constructions, and to enhance the security of cryptographic devices. PUFs have recently been proposed for various applications, including anti-counterfeiting schemes, key generation algorithms, and in the design of block ciphers. However, currently only rudimentary security models for PUFs exist, limiting the confidence in the security claims of PUF-based security primitives. A useful model should at the same time (i) define the security properties of PUFs abstractly and naturally, allowing to design and formally analyze PUF-based security solutions, and (ii) provide practical quantification tools allowing engineers to evaluate PUF instantiations. In this paper, we present a formal foundation for security primitives based on PUFs. Our approach requires as little as possible from the physics and focuses more on the main properties at the heart of most published works on PUFs: robustness (generation of stable answers), unclonability (not provided by algorithmic solutions), and unpredictability. We first formally define these properties and then show that they can be achieved by previously introduced PUF instantiations. We stress that such a consolidating work allows for a meaningful security analysis of security primitives taking advantage of physical properties, becoming increasingly important in the development of the next generation secure information systems.


international symposium on information theory | 2009

A soft decision helper data algorithm for SRAM PUFs

Roel Maes; Pim Tuyls; Ingrid Verbauwhede

In this paper we propose the idea of using soft decision information in helper data algorithms (HDA). We derive and verify a distribution for the responses of SRAM-based physically unclonable functions (PUFs) and show that soft decision information becomes available without loss in min-entropy of the fuzzy secret. This significantly improves the implementation overhead of using an SRAM PUF + HDA for cryptographic key generation compared to previous constructions.


financial cryptography | 2012

Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs

Anthony Van Herrewege; Stefan Katzenbeisser; Roel Maes; Roel Peeters; Ahmad-Reza Sadeghi; Ingrid Verbauwhede; Christian Wachsmann

RFID-based tokens are increasingly used in electronic payment and ticketing systems for mutual authentication of tickets and terminals. These systems typically use cost-effective tokens without expensive hardware protection mechanisms and are exposed to hardware attacks that copy and maliciously modify tokens. Physically Unclonable Functions (PUFs) are a promising technology to protect against such attacks by binding security critical data to the physical characteristics of the underlying hardware. However, existing PUF-based authentication schemes for RFID do not support mutual authentication, are often vulnerable to emulation and denial-of service attacks, and allow only for a limited number of authentications.


international conference on the theory and application of cryptology and information security | 2009

Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions

Frederik Armknecht; Roel Maes; Ahmad-Reza Sadeghi; Berk Sunar; Pim T. Tuyls

Physical attacks on cryptographic implementations and devices have become crucial. In this context a recent line of research on a new class of side-channel attacks, called memory attacks , has received increasingly more attention. These attacks allow an adversary to measure a significant fraction of secret key bits directly from memory, independent of any computational side-channels. Physically Unclonable Functions (PUFs) represent a promising new technology that allows to store secrets in a tamper-evident and unclonable manner. PUFs enjoy their security from physical structures at submicron level and are very useful primitives to protect against memory attacks. In this paper we aim at making the first step towards combining and binding algorithmic properties of cryptographic schemes with physical structure of the underlying hardware by means of PUFs. We introduce a new cryptographic primitive based on PUFs, which we call PUF-PRFs. These primitives can be used as a source of randomness like pseudorandom functions (PRFs). We construct a block cipher based on PUF-PRFs that allows simultaneous protection against algorithmic and physical attackers, in particular against memory attacks. While PUF-PRFs in general differ in some aspects from traditional PRFs, we show a concrete instantiation based on established SRAM technology that closes these gaps.


international workshop on information forensics and security | 2012

Machine learning attacks on 65nm Arbiter PUFs: Accurate modeling poses strict bounds on usability

Gabriel Hospodar; Roel Maes; Ingrid Verbauwhede

Arbiter Physically Unclonable Functions (PUFs) have been proposed as efficient hardware security primitives for generating device-unique authentication responses and cryptographic keys. However, the assumed possibility of modeling their underlying challenge-response behavior causes uncertainty about their actual applicability. In this work, we apply well-known machine learning techniques on challenge-response pairs (CRPs) from 64-stage Arbiter PUFs realized in 65nm CMOS, in order to evaluate the effectiveness of such modeling attacks on a modern silicon implementation. We show that a 90%-accurate model can be built from a training set of merely 500 CRPs, and that 5000 CRPs are sufficient to perfectly model the PUFs. To study the implications of these attacks, there is need for a new methodology to assess the security of PUFs suffering from modeling. We propose such a methodology and apply it to our machine learning results, yielding strict bounds on the usability of Arbiter PUFs. We conclude that plain 64-stage Arbiter PUFs are not secure for challenge-response authentication, and the number of extractable secret key bits is limited to at most 600.


european solid-state circuits conference | 2012

Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS

Roel Maes; Vladimir Rozic; Ingrid Verbauwhede; Patrick Koeberl; Erik van der Sluis; Vincent van der Leest

We present a silicon characterization vehicle implementing six different constructions of intrinsic Physically Unclonable Functions (PUFs). The design contains four different memory-based PUFs, one of which is a novel buskeeper PUF, and two different delay-based PUFs. Test chips are fabricated in 65 nm Low Power (LP) technology, using a standard cell ASIC design flow for the memory-based PUFs and a full custom flow for the delay-based ones. This test vehicle enables a comprehensive experimental evaluation of individual PUF implementations as well as a comparative analysis across different PUF types for the same silicon technology. PUF responses are obtained from 192 device samples and the uniqueness and reliability of the implemented PUFs are evaluated. In addition, the effects of varying temperature and silicon device ageing on the PUF characteristics are extensively studied.


cryptographic hardware and embedded systems | 2013

An accurate probabilistic reliability model for silicon PUFs

Roel Maes

The power of an accurate model for describing a physical process or designing a physical system is beyond doubt. The currently used reliability model for physically unclonable functions (PUFs) assumes an equally likely error for every evaluation of every PUF response bit. This limits an accurate description since experiments show that certain responses are more error-prone than others, but this fixed error rate model only captures average case behavior. We introduce a new PUF reliability model taking this observed heterogeneous nature of PUF cells into account. An extensive experimental validation demonstrates the new predicted distributions describe the empirically observed data statistics almost perfectly, even considering sensitivity to operational temperature. This allows studying PUF reliability behavior in full detail, including average and worst case probabilities, and is an invaluable tool for designing more efficient and better adapted PUFs and PUF-based systems.

Collaboration


Dive into the Roel Maes's collaboration.

Top Co-Authors

Avatar

Ingrid Verbauwhede

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad-Reza Sadeghi

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frans M. J. Willems

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony Van Herrewege

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Christian Wachsmann

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

T Tanya Ignatenko

Eindhoven University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge