Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roey Angel is active.

Publication


Featured researches published by Roey Angel.


Frontiers in Microbiology | 2016

A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes.

Craig W. Herbold; Claus Pelikan; Orest Kuzyk; Bela Hausmann; Roey Angel; David Berry; Alexander Loy

High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology.


Frontiers in Microbiology | 2016

Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

Adrian Ho; Roey Angel; Annelies J. Veraart; Anne Daebeler; Zhongjun Jia; Sang Yoon Kim; Frederiek-Maarten Kerckhof; Nico Boon; Paul L. E. Bodelier

Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.


Frontiers in Microbiology | 2013

Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas.

Katrin Aschenbach; Ralf Conrad; Klára Řeháková; Jiří Doležal; Kateřina Janatková; Roey Angel

Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts.


Microbial Ecology | 2016

The Root-Associated Microbial Community of the World’s Highest Growing Vascular Plants

Roey Angel; Ralf Conrad; Miroslav Dvorsky; Martin Kopecky; Milan Kotilínek; Inga Hiiesalu; Fritz H. Schweingruber; Jiří Doležal

Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150xa0m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.


Environmental Microbiology | 2016

Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types

Yang Ji; Roey Angel; Melanie Klose; Peter Claus; Humberto Marotta; Luana Queiroz Pinho; Alex Enrich-Prast; Ralf Conrad

Tropical lake sediments are a significant source for the greenhouse gas methane. We studied function (pathway, rate) and structure (abundance, taxonomic composition) of the microbial communities (Bacteria, Archaea) leading to methane formation together with the main physicochemical characteristics in the sediments of four clear water, six white water and three black water lakes of the Amazon River system. Concentrations of sulfate and ferric iron, pH and δ13 C of organic carbon were usually higher, while concentrations of carbon, nitrogen and rates of CH4 production were generally lower in white water versus clear water or black water sediments. Copy numbers of bacterial and especially archaeal ribosomal RNA genes also tended to be relatively lower in white water sediments. Hydrogenotrophic methanogenesis contributed 58u2009±u200916% to total CH4 production in all systems. Network analysis identified six communities, of which four were comprised mostly of bacteria found in all sediment types, while two were mostly in clear water sediment. Terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing showed that the compositions of the communities differed between the different sediment systems, statistically related to the particular physicochemical conditions and to CH4 production rates. Among the archaea, clear water, white water, and black water sediments contained relatively more Methanomicrobiales, Methanosarcinaceae and Methanocellales, respectively, while Methanosaetaceae were common in all systems. Proteobacteria, Deltaproteobacteria (Myxococcales, Syntrophobacterales, sulfate reducers) in particular, Acidobacteria and Firmicutes were the most abundant bacterial phyla in all sediment systems. Among the other important bacterial phyla, clear water sediments contained relatively more Alphaproteobacteria and Planctomycetes, whereas white water sediments contained relatively more Betaproteobacteria, Firmicutes, Actinobacteria, and Chloroflexi than the respective other sediment systems. The data showed communities of bacteria common to all sediment types, but also revealed microbial groups that were significantly different between the sediment types, which also differed in physicochemical conditions. Our study showed that function of the microbial communities may be understood on the basis of their structures, which in turn are determined by environmental heterogeneity.


Environmental Microbiology | 2018

Application of stable-isotope labelling techniques for the detection of active diazotrophs

Roey Angel; Christopher Panhölzl; Raphael Gabriel; Craig W. Herbold; Wolfgang Wanek; Andreas Richter; Stephanie A. Eichorst; Dagmar Woebken

Summary Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free‐living or symbionts. Free‐living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N‐based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N‐RNA‐SIP approach optimized for environmental samples and benchmarked to 15N‐DNA‐SIP. Lastly, we investigated the feasibility of using SIP‐Raman microspectroscopy for detecting 15N‐labelled cells. Taken together, these tools allow identifying and investigating active free‐living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single‐cell level.


Journal of the Royal Society Interface | 2017

Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis

Jesse P. Harrison; Roey Angel; Charles S. Cockell

Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.


Frontiers in Microbiology | 2018

Evaluation of primers targeting the diazotroph functional gene and development of NifMAP – a bioinformatics pipeline for analyzing nifH amplicon data

Roey Angel; Maximilian Nepel; Christopher Panhölzl; Hannes Schmidt; Craig W. Herbold; Stephanie A. Eichorst; Dagmar Woebken

Diazotrophic microorganisms introduce biologically available nitrogen (N) to the global N cycle through the activity of the nitrogenase enzyme. The genetically conserved dinitrogenase reductase (nifH) gene is phylogenetically distributed across four clusters (I–IV) and is widely used as a marker gene for N2 fixation, permitting investigators to study the genetic diversity of diazotrophs in nature and target potential participants in N2 fixation. To date there have been limited, standardized pipelines for analyzing the nifH functional gene, which is in stark contrast to the 16S rRNA gene. Here we present a bioinformatics pipeline for processing nifH amplicon datasets – NifMAP (“NifH MiSeq Illumina Amplicon Analysis Pipeline”), which as a novel aspect uses Hidden-Markov Models to filter out homologous genes to nifH. By using this pipeline, we evaluated the broadly inclusive primer pairs (Ueda19F–R6, IGK3–DVV, and F2–R6) that target the nifH gene. To evaluate any systematic biases, the nifH gene was amplified with the aforementioned primer pairs in a diverse collection of environmental samples (soils, rhizosphere and roots samples, biological soil crusts and estuarine samples), in addition to a nifH mock community consisting of six phylogenetically diverse members. We noted that all primer pairs co-amplified nifH homologs to varying degrees; up to 90% of the amplicons were nifH homologs with IGK3–DVV in some samples (rhizosphere and roots from tall oat-grass). In regards to specificity, we observed some degree of bias across the primer pairs. For example, primer pair F2–R6 discriminated against cyanobacteria (amongst others), yet captured many sequences from subclusters IIIE and IIIL-N. These aforementioned subclusters were largely missing by the primer pair IGK3–DVV, which also tended to discriminate against Alphaproteobacteria, but amplified sequences within clusters IIIC (affiliated with Clostridia) and clusters IVB and IVC. Primer pair Ueda19F–R6 exhibited the least bias and successfully captured diazotrophs in cluster I and subclusters IIIE, IIIL, IIIM, and IIIN, but tended to discriminate against Firmicutes and subcluster IIIC. Taken together, our newly established bioinformatics pipeline, NifMAP, along with our systematic evaluations of nifH primer pairs permit more robust, high-throughput investigations of diazotrophs in diverse environments.


HASH(0x7f331ade0950) | 2016

Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

Emily B. Graham; Joseph E. Knelman; Andreas Schindlbacher; Steven D. Siciliano; Marc Breulmann; Anthony C. Yannarell; J. M. Beman; Guy C.J. Abell; Laurent Philippot; James I. Prosser; Arnaud Foulquier; Jorge Curiel Yuste; Helen C. Glanville; Davey L. Jones; Roey Angel; Janne Salminen; Ryan J. Newton; Helmut Bürgmann; Lachlan J. Ingram; Ute Hamer; Henri M.P. Siljanen; Krista Peltoniemi; Karin Potthast; Lluís Bañeras; Martin Hartmann; Samiran Banerjee; Ri-Qing Yu; Geraldine Nogaro; Andreas Richter; Marianne Koranda


HASH(0x7f331b0962f8) | 2015

A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

Craig W. Herbold; Claus Pelikan; Orest Kuzyk; Bela Hausmann; Roey Angel; David Berry; Alexander Loy

Collaboration


Dive into the Roey Angel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge