Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger A. Bannister is active.

Publication


Featured researches published by Roger A. Bannister.


The Journal of General Physiology | 2009

The Skeletal L-type Ca2+ Current Is a Major Contributor to Excitation-coupled Ca2+ entry

Roger A. Bannister; Isaac N. Pessah; Kurt G. Beam

The term excitation-coupled Ca2+ entry (ECCE) designates the entry of extracellular Ca2+ into skeletal muscle cells, which occurs in response to prolonged depolarization or pulse trains and depends on the presence of both the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor in the sarcoplasmic reticulum (SR) membrane. The ECCE pathway is blocked by pharmacological agents that also block store-operated Ca2+ entry, is inhibited by dantrolene, is relatively insensitive to the DHP antagonist nifedipine (1 μM), and is permeable to Mn2+. Here, we have examined the effects of these agents on the L-type Ca2+ current conducted via the DHPR. We found that the nonspecific cation channel antagonists (2-APB, SKF 96356, La3+, and Gd3+) and dantrolene all inhibited the L-type Ca2+ current. In addition, complete (>97%) block of the L-type current required concentrations of nifedipine >10 μM. Like ECCE, the L-type Ca2+ channel displays permeability to Mn2+ in the absence of external Ca2+ and produces a Ca2+ current that persists during prolonged (∼10-second) depolarization. This current appears to contribute to the Ca2+ transient observed during prolonged KCl depolarization of intact myotubes because (1) the transients in normal myotubes decayed more rapidly in the absence of external Ca2+; (2) the transients in dysgenic myotubes expressing SkEIIIK (a DHPR α1S pore mutant thought to conduct only monovalent cations) had a time course like that of normal myotubes in Ca2+-free solution and were unaffected by Ca2+ removal; and (3) after block of SR Ca2+ release by 200 μM ryanodine, normal myotubes still displayed a large Ca2+ transient, whereas no transient was detectable in SkEIIIK-expressing dysgenic myotubes. Collectively, these results indicate that the skeletal muscle L-type channel is a major contributor to the Ca2+ entry attributed to ECCE.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle

Gennady Cherednichenko; Rui Zhang; Roger A. Bannister; Valeriy Timofeyev; Ning Li; Erika B. Fritsch; Wei Feng; Genaro Barrientos; Nils Helge Schebb; Bruce D. Hammock; Kurt G. Beam; Nipavan Chiamvimonvat; Isaac N. Pessah

Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation–contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10–20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca2+ transients followed by complete failure of ECC, independent of Ca2+ store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca2+ entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca2+ currents of cardiac and skeletal muscle, and [3H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [3H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca2+ and RyR channels in skeletal muscle, and L-type Ca2+ entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor

Jose M. Eltit; Roger A. Bannister; Ong Moua; Francisco Altamirano; P.M. Hopkins; Isaac N. Pessah; Tadeusz F. Molinski; Jose R. Lopez; Kurt G. Beam; Paul D. Allen

Malignant hyperthermia (MH) susceptibility is a dominantly inherited disorder in which volatile anesthetics trigger aberrant Ca2+ release in skeletal muscle and a potentially fatal rise in perioperative body temperature. Mutations causing MH susceptibility have been identified in two proteins critical for excitation–contraction (EC) coupling, the type 1 ryanodine receptor (RyR1) and CaV1.1, the principal subunit of the L-type Ca2+ channel. All of the mutations that have been characterized previously augment EC coupling and/or increase the rate of L-type Ca2+ entry. The CaV1.1 mutation R174W associated with MH susceptibility occurs at the innermost basic residue of the IS4 voltage-sensing helix, a residue conserved among all CaV channels [Carpenter D, et al. (2009) BMC Med Genet 10:104–115.]. To define the functional consequences of this mutation, we expressed it in dysgenic (CaV1.1 null) myotubes. Unlike previously described MH-linked mutations in CaV1.1, R174W ablated the L-type current and had no effect on EC coupling. Nonetheless, R174W increased sensitivity of Ca2+ release to caffeine (used for MH diagnostic in vitro testing) and to volatile anesthetics. Moreover, in CaV1.1 R174W-expressing myotubes, resting myoplasmic Ca2+ levels were elevated, and sarcoplasmic reticulum (SR) stores were partially depleted, compared with myotubes expressing wild-type CaV1.1. Our results indicate that CaV1.1 functions not only to activate RyR1 during EC coupling, but also to suppress resting RyR1-mediated Ca2+ leak from the SR, and that perturbation of CaV1.1 negative regulation of RyR1 leak identifies a unique mechanism that can sensitize muscle cells to MH triggers.


Journal of Biological Chemistry | 2004

Mapping Sites of Potential Proximity between the Dihydropyridine Receptor and RyR1 in Muscle Using a Cyan Fluorescent Protein-Yellow Fluorescent Protein Tandem as a Fluorescence Resonance Energy Transfer Probe

Symeon Papadopoulos; Valérie Leuranguer; Roger A. Bannister; Kurt G. Beam

Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the α1S and β1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both α1S (N-terminal, proximal II-III loop of a two fragment construct) and β1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (α1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of β1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of α1S. Thus, the tandem reporter suggests that the C terminus of α1S and the N terminus of β1a may be in close proximity to the ryanodine receptor.


Biophysical Journal | 2008

Rem Inhibits Skeletal Muscle EC Coupling by Reducing the Number of Functional L-Type Ca2+ Channels

Roger A. Bannister; Henry M. Colecraft; Kurt G. Beam

In skeletal muscle, the L-type voltage-gated Ca(2+) channel (1,4-dihydropyridine receptor) serves as the voltage sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type Ca(2+) channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca(2+) transients. This impaired EC coupling was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca(2+) stores, since the application of 4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca(2+) release in YFP-Rem-expressing myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type Ca(2+) current by approximately 75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca(2+) channels in the plasma membrane.


Journal of Muscle Research and Cell Motility | 2007

Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling

Roger A. Bannister

Conformational coupling between the L-type voltage-gated Ca2+ channel (or 1,4–dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca2+ release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation–contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I–II, II–III, and III–IV) of the DHPR α1S subunit in bi-directional communication with RyR1 will be discussed.


Biochimica et Biophysica Acta | 2013

CaV1.1: The atypical prototypical voltage-gated Ca2 + channel ☆

Roger A. Bannister; Kurt G. Beam

Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²⁺ channel which contributes to a form of activity-dependent Ca²⁺ entry that has been termed Excitation-coupled Ca²⁺ entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²⁺ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²⁺ entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.


The Journal of General Physiology | 2010

Looking for answers to EC coupling’s persistent questions

Kurt G. Beam; Roger A. Bannister

In the heart, translocation of the S4 voltage-sensing helices of cardiac L-type Ca2+ channels (or 1,4-dihydropyridine receptors [DHPRs]) in response to depolarization of the sarcolemma is the initial event in excitation–contraction (EC) coupling. The movement of the voltage sensors is in turn


The Journal of General Physiology | 2010

A malignant hyperthermia–inducing mutation in RYR1 (R163C): alterations in Ca2+ entry, release, and retrograde signaling to the DHPR

E. Estève; Jose M. Eltit; Roger A. Bannister; Kai Liu; Isaac N. Pessah; Kurt G. Beam; Paul D. Allen; Jose R. Lopez

Bidirectional signaling between the sarcolemmal L-type Ca2+ channel (1,4-dihydropyridine receptor [DHPR]) and the sarcoplasmic reticulum (SR) Ca2+ release channel (type 1 ryanodine receptor [RYR1]) of skeletal muscle is essential for excitation–contraction coupling (ECC) and is a well-understood prototype of conformational coupling. Mutations in either channel alter coupling fidelity and with an added pharmacologic stimulus or stress can trigger malignant hyperthermia (MH). In this study, we measured the response of wild-type (WT), heterozygous (Het), or homozygous (Hom) RYR1-R163C knock-in mouse myotubes to maintained K+ depolarization. The new findings are: (a) For all three genotypes, Ca2+ transients decay during prolonged depolarization, and this decay is not a consequence of SR depletion or RYR1 inactivation. (b) The R163C mutation retards the decay rate with a rank order WT > Het > Hom. (c) The removal of external Ca2+ or the addition of Ca2+ entry blockers (nifedipine, SKF96365, and Ni2+) enhanced the rate of decay in all genotypes. (d) When Ca2+ entry is blocked, the decay rates are slower for Hom and Het than WT, indicating that the rate of inactivation of ECC is affected by the R163C mutation and is genotype dependent (WT > Het > Hom). (e) Reduced ECC inactivation in Het and Hom myotubes was shown directly using two identical K+ depolarizations separated by varying time intervals. These data suggest that conformational changes induced by the R163C MH mutation alter the retrograde signal that is sent from RYR1 to the DHPR, delaying the inactivation of the DHPR voltage sensor.


American Journal of Physiology-cell Physiology | 2008

The monomeric G proteins AGS1 and Rhes selectively influence Gαi-dependent signaling to modulate N-type (CaV2.2) calcium channels

Ashish Thapliyal; Roger A. Bannister; Christopher Hanks; Brett A. Adams

Activator of G protein Signaling 1 (AGS1) and Ras homologue enriched in striatum (Rhes) define a new group of Ras-like monomeric G proteins whose signaling properties and physiological roles are just beginning to be understood. Previous results suggest that AGS1 and Rhes exhibit distinct preferences for heterotrimeric G proteins, with AGS1 selectively influencing Galphai and Rhes selectively influencing Galphas. Here, we demonstrate that AGS1 and Rhes trigger nearly identical modulation of N-type Ca(2+) channels (Ca(V)2.2) by selectively altering Galphai-dependent signaling. Whole-cell currents were recorded from HEK293 cells expressing Ca(V)2.2 and Galphai- or Galphas-coupled receptors. AGS1 and Rhes reduced basal current densities and triggered tonic voltage-dependent (VD) inhibition of Ca(V)2.2. Additionally, each protein attenuated agonist-initiated channel inhibition through Galphai-coupled receptors without reducing channel inhibition through a Galphas-coupled receptor. The above effects of AGS1 and Rhes were blocked by pertussis toxin (PTX) or by expression of a Gbetagamma-sequestering peptide (masGRK3ct). Transfection with HRas, KRas2, Rap1A-G12V, Rap2B, Rheb2, or Gem failed to duplicate the effects of AGS1 and Rhes on Ca(V)2.2. Our data provide the first demonstration that AGS1 and Rhes exhibit similar if not identical signaling properties since both trigger tonic Gbetagamma signaling and both attenuate receptor-initiated signaling by the Gbetagamma subunits of PTX-sensitive G proteins. These results are consistent with the possibility that AGS1 and Rhes modulate Ca(2+) influx through Ca(V)2.2 channels under more physiological conditions and thereby influence Ca(2+)-dependent events such as neurosecretion.

Collaboration


Dive into the Roger A. Bannister's collaboration.

Top Co-Authors

Avatar

Kurt G. Beam

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Donald Beqollari

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Christin F. Romberg

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Allen

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ong Moua

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jose R. Lopez

University of California

View shared research outputs
Top Co-Authors

Avatar

Ulises Meza

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge