Roger A. Burks
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger A. Burks.
PLOS ONE | 2011
James B. Munro; Roger A. Burks; David C. Hawks; Jason L. Mottern; Astrid Cruaud; Jean-Yves Rasplus; Petr Janšta
Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of 18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae, Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several other families are paraphyletic (Perilampidae) or polyphyletic (Aphelinidae, Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae). Evolutionary scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, sternorrhynchan parasitism, hypermetamorphic development and heteronomy.
Cladistics | 2011
Roger A. Burks; Marco Gebiola; Christer Hansson
A new combined molecular and morphological phylogeny of the Eulophidae is presented with special reference to the subfamily Entedoninae. We examined 28S D2–D5 and CO1 gene regions with parsimony and partitioned Bayesian analyses, and examined the impact of a small set of historically recognized morphological characters on combined analyses. Eulophidae was strongly supported as monophyletic only after exclusion of the enigmatic genus Trisecodes. The subfamilies Eulophinae, Entiinae (=Euderinae) and Tetrastichinae were consistently supported as monophyletic, but Entedoninae was monophyletic only in combined analyses. Six contiguous bases in the 3e′ subregion of the 28S D2 rDNA contributed to placement of nominal subgenus of Closterocerus outside Entedoninae. In all cases, Euderomphalini was excluded from Entiinae, and we suggest that it be retained in Entedoninae. Opheliminae n. stat. is raised from tribe to subfamily status. Trisecodes is removed from Entedoninae but retained as incertae sedis in Eulophidae until its family placement can be determined new placement. The genera Neochrysocharisstat. rev. and Asecodesstat. rev. are removed from synonymy with Closterocerus because strong molecular differences corroborate their morphological differences. Closterocerus (Achrysocharis) germanicus is transferred to the genus Chrysonotomyian. comb. based on molecular and morphological characters.
Zootaxa | 2015
Roger A. Burks; Jason L. Mottern; Rebeccah A. Waterworth; Timothy D. Paine
Ophelimus maskelli (Ashmead) (Hymenoptera: Eulophidae) was found in southern California, USA, on March 17, 2014, in Riverside County, University of California Riverside Campus (UCR), and has been common there since then. It has also been found in other locations in southern California, including San Diego County (San Diego Safari Park on November 1, 2014), and Orange County (Laguna Niguel Regional Park). Specimens collected from UCR were compared with voucher specimens of O. maskelli collected from Lazio, Italy, and were found to be conspecific. This represents the first report of O. maskelli from the Western Hemisphere.
ZooKeys | 2015
Roger A. Burks; Jason L. Mottern; Nicole G. Pownall; Rebeccah A. Waterworth; Timothy D. Paine
Abstract The uniparental parasitoid Closterocerus chamaeleon (Girault) is discovered to be fortuitously present on a population of the invasive Eucalyptus Gall Wasp Ophelimus maskelli (Ashmead) in Riverside, California. This is the first report from the New World of Closterocerus chamaeleon, which has proven to be a highly effective natural enemy of Ophelimus maskelli in the Mediterranean Basin. The taxonomy and identification of Closterocerus chamaeleon is discussed.
Systematic Entomology | 2015
Roger A. Burks; John D. Pinto; David A. Grimaldi
New species of fossil Aphelinidae and Trichogrammatidae are described from middle Eocene (Lutetian) Baltic amber (41.3–47.8 Ma). A new subfamily, two new genera and three new species of Aphelinidae are described, with comments on their placement: Phtuaria fimbriae gen.n., sp.n. in Phtuariinae subf.n., Glaesaphytis interregni gen.n., sp.n. and Centrodora brevispinae sp.n. These represent the first described true fossil Aphelinidae. Four new species of Trichogrammatidae are described: Mirufens illusionis sp.n., Palaeogramma eos gen.n., sp.n., Pterandrophysalis plasmans sp.n. and Szelenyia terebrae sp.n., thus expanding our knowledge of fossil Trichogrammatidae beyond the single previously described species. The presence of recognizable extant genera of Aphelinidae and Trichogrammatidae in the Eocene suggests that the morphology of these genera has been relatively invariant despite highly variable conditions during and since the Eocene.
Zootaxa | 2015
Roger A. Burks; Jason L. Mottern
The Neotropical Orasema festiva species group is revised, retaining O. festiva (Fabricius) and O. delicatula (Walker) as valid species, and describing four new species: O. alvarengai n. sp., O. caesariata n. sp., O. erwini n. sp., and O. reburra n. sp. The festiva-group is characterized by features that are unusual or unique in Orasema, including the presence of 8-11 labral digits, a smooth face, and a lateral petiolar carina. The egg of O. caesariata and the first-instar larva of O. delicatula are newly described and found to be similar to other species of Orasema.
PeerJ | 2018
Michael Haas; Roger A. Burks; Lars Krogmann
Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species, Diversinitus attenboroughi gen. & sp. n., Burminata caputaeria gen. & sp. n. and Glabiala barbata gen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.
Zootaxa | 2018
Roger A. Burks; Chrysalyn Dominguez; Jason L. Mottern
Twenty-nine species are recognized in the Orasema stramineipes species group, including 22 new species in what is now the most diverse species group of the New World ant-parasitoid genus Orasema Cameron. Orasema aenea Gahan syn. n. is synonymized with O. freychei (Gemignani), the holotype of which has been rediscovered. Orasema smithi Howard syn. n. is synonymized with Orasema minutissima Howard. Orasema violacea Gemignani syn. n. and its replacement name Orasema gemignanii De Santis syn. n. are synonymized with O. worcesteri (Girault). Twenty-two species are described as new: O. arimbome Dominguez, Heraty Burks n. sp., O. carchi Heraty, Burks Dominguez n. sp., and the following 20 species by Burks, Heraty Dominguez: O. chunpi n. sp., O. cozamalotl n. sp., O. evansi n. sp., O. hyarimai n. sp., O. kaspi n. sp., O. kulli n. sp., O. llanthu n. sp., O. llika n. sp., O. mati n. sp., O. nyamo n. sp., O. pirca n. sp., O. pisi n. sp., O. qillu n. sp., O. qincha n. sp., O. rikra n. sp., O. taku n. sp., O. tapi n. sp., O. torrensi n. sp., O. woolleyi n. sp., and O. yaax n. sp. The stramineipes-group has much greater diversity in tropical America than outside the tropics, and is much more diverse than its sister-group, the susanae-group, which is mainly present in temperate regions of Argentina. A hypothesis of phylogenetic relationships is proposed based on an analysis of 28S-D2 rDNA and cytochrome oxidase I (COI) for 14 stramineipes-group species. Species concepts were established using both morphological and molecular data. Most species in the stramineipes-group have a tropical distribution, with only a few species in temperate regions. Ant hosts for the group include Pheidole Westwood, Wasmannia Forel, and possibly Solenopsis Westwood (Formicidae: Myrmicinae). Orasema minutissima is a common parasitoid of Wasmannia auropunctata Roger in the Caribbean and has the potential to be a biological control agent in other areas of the world. Two distinct size morphs are recognized for O. minutissima, which are correlated with attacking either Wasmannia (small morph) or different castes of Pheidole (medium to large size morphs). Some species of Orasema have been regarded as pests due to scarring or secondary infections of leaves or fruit of banana, yerba mate or blueberry, but outbreaks are rare and the threat is usually temporary.
Zootaxa | 2018
Roger A. Burks; Nokuthula Mbanyana; Simon van Noort
Eucharitidae (Hymenoptera) are specialized ant (Formicidae) parasitoids. As we begin to develop a better understanding of their phylogenetic relationships, it is critical to establish baselines for morphological and biological data. A morphological review and the first report of life history data for Psilocharis afra Heraty is provided based on new material from the Mpumalanga Province of South Africa. Psilocharis Heraty is included in Eucharitinae, but it is unclear whether it is the sister group of all other members of the subfamily, or sister group to Neolosbanus Girault in a monophyletic Psilocharitini, which would in turn be sister group to Eucharitini. The oviposition habits of P. afra differ from those of other Eucharitidae in that eggs are placed among trichomes under bracts at flower bases, instead of either being inserted into cavities formed in plant tissue by an enlarged ovipositor (as in Oraseminae and some Neolosbanus) or inserted into cavities in plant tissue, as in most Eucharitini. The egg and first-instar planidia larva are described, and adult morphology is discussed with reference to Eucharitidae and other parasitoid Hymenoptera.
Archive | 2018
Roger A. Burks; Chrysalyn Dominguez; Jason L. Mottern
FIGURES 215–220. Orasema taku. Holotype ♀: 215. Habitus. 216. Head. 217. Antenna, with F2 plus pedicel, and F6–F7 inset.218.Mesosoma, dorsal view. 219.Axillula. 220.Stigma and postmarginal vein.