Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger A.H. Adan is active.

Publication


Featured researches published by Roger A.H. Adan.


Peptides | 2002

Neuropeptides, food intake and body weight regulation: a hypothalamic focus

Jacquelien J.G. Hillebrand; D. de Wied; Roger A.H. Adan

Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.


British Journal of Pharmacology | 2006

The MC4 receptor and control of appetite

Roger A.H. Adan; Birgitte Tiesjema; Jacquelien J.G. Hillebrand; S E la Fleur; Martien J.H. Kas; M de Krom

Mutations in the human melanocortin (MC)4 receptor have been associated with obesity, which underscores the relevance of this receptor as a drug target to treat obesity. Infusion of MC4R agonists decreases food intake, whereas inhibition of MC receptor activity by infusion of an MC receptor antagonist or with the inverse agonist AgRP results in increased food intake. This review addresses the role of the MC system in different aspects of feeding behaviour. MC4R activity affects meal size and meal choice, but not meal frequency, and the type of diet affects the efficacy of MC4R agonists to reduce food intake. The central sites involved in the different aspects of feeding behaviour that are affected by MC4R signalling are being unravelled. The paraventricular nucleus plays an important role in food intake per se, whereas MC signalling in the lateral hypothalamus is associated with the response to a high fat diet. MC4R signalling in the brainstem has been shown to affect meal size. Further genetic, behavioural and brain‐region specific studies need to clarify how the MC4R agonists affect feeding behaviour in order to determine which obese individuals would benefit most from treatment with these drugs. Application of MCR agonists in humans has already revealed side effects, such as penile erections, which may complicate introduction of these drugs in the treatment of obesity.


The American Journal of Clinical Nutrition | 2009

Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference

Florianne Bauer; Clara C. Elbers; Roger A.H. Adan; Ruth J. F. Loos; N. Charlotte Onland-Moret; Diederick E. Grobbee; Jana V. van Vliet-Ostaptchouk; Cisca Wijmenga; Yvonne T. van der Schouw

BACKGROUND New genetic loci, most of which are expressed in the brain, have recently been reported to contribute to the development of obesity. The brain, especially the hypothalamus, is strongly involved in regulating weight and food intake. OBJECTIVES We investigated whether the recently reported obesity loci are associated with measures of abdominal adiposity and whether these variants affect dietary energy or macronutrient intake. DESIGN We studied 1700 female Dutch participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Their anthropometric measurements and intake of macronutrients were available. Genotyping was performed by using KASPar chemistry. A linear regression model, with an assumption of an additive effect, was used to analyze the association between genotypes of 12 single nucleotide polymorphisms (SNPs) and adiposity measures and dietary intake. RESULTS Seven SNPs were associated (P < 0.05) with weight, body mass index (BMI), and waist circumference (unadjusted for BMI). They were in or near to 6 loci: FTO, MC4R, KCTD15, MTCH2, NEGR1, and BDNF. Five SNPs were associated with dietary intake (P < 0.05) and were in or near 5 loci: SH2B1 (particularly with increased fat), KCTD15 (particularly with carbohydrate intake), MTCH2, NEGR1, and BDNF. CONCLUSIONS We confirmed some of the findings for the newly identified obesity loci that are associated with general adiposity in a healthy Dutch female population. Our results suggest that these loci are not specifically associated with abdominal adiposity but more generally with obesity. We also found that some of the SNPs were associated with macronutrient-specific food intake.


Molecular Psychiatry | 2001

Association between an agouti-related protein gene polymorphism and anorexia nervosa

T Vink; Anke Hinney; A. van Elburg; S.H.M. (Stephanie) van Goozen; Lodewijk A. Sandkuijl; Richard J. Sinke; Beate Herpertz-Dahlmann; Johannes Hebebrand; Helmut Remschmidt; H. van Engeland; Roger A.H. Adan

Anorexia nervosa (AN) is a life threatening disorder affecting mostly adolescent women. It is a dramatic psychiatric syndrome accompanied by severe weight loss, hyperactivity and neuroendocrine changes (reviewed in Refs 1 and 2). Several studies have shown a strong genetic component in AN (reviewed in Ref 3). Recent advances in unraveling the mechanisms of weight control4 point to a crucial role of the melanocortin-4 receptor (MC4-r) system in regulating body weight. The orexigenic neuropeptide agouti-related protein (AGRP), a MC4-r antagonist, plays a crucial role in maintaining body weight, by inducing food intake. The sequence of the coding region of the human AGRP gene (AGRP) was determined and the AGRP of 100 patients with AN was screened for variations. Three single nucleotide polymorphisms (SNPs) were identified and screened in a further 45 patients and 244 controls. Two alleles were in complete linkage disequilibrium and were significantly enriched in anorectic patients (11%; P = 0.015) compared to controls (4.5%). These data indicate that variations of AGRP are associated with susceptibility for AN. This is possibly caused by defective suppression of the MC4-r by the variant AGRP, leading to a decreased feeding signal, increasing the risk of developing AN. These results implicate that antagonism of the MC4-r might be considered as pharmacotherapy for patients with AN.


Peptides | 1997

Brain melanocortin receptors: from cloning to function

Roger A.H. Adan; Willem Hendrik Gispen

The cloning of brain melanocortin (MC) receptors, the mapping of their expression pattern and the identification of MC receptor selective ligands have opened a new avenue towards elucidating the role of the melanocortin system in the brain. MC receptors have now been implicated in melanocortin-induced grooming behavior in rats, in the melanocortin-induced lowering of blood pressure and in the control of weight homeostasis. Functional opioid antagonism and the anti-pyretic and anti-inflammatory effects of melanocortins are probably also mediated via MC receptors. However, the effects of melanocortins on avoidance behavior and the effect of gamma 2-MSH on increasing blood pressure are not mediated via one of the cloned brain MC receptors. The structure of brain MC receptors, their expression pattern, the MC receptor selective ligands and the function of MC receptors are briefly reviewed.


International Journal of Obesity | 2007

A reciprocal interaction between food-motivated behavior and diet-induced obesity

S.E. La Fleur; Louk J. M. J. Vanderschuren; Mieneke C. M. Luijendijk; B M Kloeze; Birgitte Tiesjema; Roger A.H. Adan

Objectives:One of the main causes of obesity is overconsumption of diets high in fat and sugar. We studied the metabolic changes and food-motivated behavior when rats were subjected to a choice diet with chow, lard and a 30% sucrose solution (high fat high sugar (HFHS)-choice diet). Because rats showed considerable variations in the feeding response to HFHS-choice diet and in food-motivated behavior, we investigated whether the motivation to obtain a sucrose reward correlated with the development of obesity when rats were subsequently subjected to HFHS-choice diet.Method:We first studied feeding, locomotor activity and body temperature, fat weights and hormonal concentrations when male Wistar rats were subjected to HFHS-choice diet for 1 week. Second, we studied sucrose-motivated behavior, using a progressive ratio (PR) schedule of reinforcement in rats that were subjected to the HFHS-choice diet for at least 2 weeks, compared to control rats on a chow diet. Third, we measured motivation for sucrose under a PR schedule of reinforcement in rats that were subsequently subjected to HFHS-choice diet or a chow diet for 4 weeks. Fat weights were measured and correlated with the motivation to obtain sucrose pellets.Results:One week on the HFHS-choice diet increased plasma concentrations of glucose and leptin, increased fat stores, but did not alter body temperature or locomotor activity. Moreover, consuming the HFHS-choice diet for several weeks increased the motivation to work for sucrose pellets. Furthermore, the motivation to obtain sucrose pellets correlated positively with abdominal fat stores in rats subsequently subjected to the HFHS-choice diet, whereas this correlation was not found in rats fed on a chow diet.Conclusion:Our data suggest that the motivation to respond for palatable food correlates with obesity due to an obesogenic environment. Conversely, the HFHS-choice diet, which results in obesity, also increased the motivation to work for sucrose. Thus, being motivated to work for sucrose results in obesity, which, in turn, increases food-motivated behavior, resulting in a vicious circle of food motivation and obesity.


Cellular and Molecular Neurobiology | 1995

Molecular neurobiology and pharmacology of the Vasopressin/Oxytocin receptor family

J. Peter; H. Burbach; Roger A.H. Adan; Stephen J. Lolait; Fred W. van Leeuwen; Eva Mezey; Miklós Palkovits; Claude Barberis

Summary1. VP and OT mediate their wealth of effects via 4 receptor subtypes V1a, V1b, V2, and OT receptors.2. We here review recent insights in the pharmacological properties, structure activity relationships, species differences in ligand specificity, expression patterns, and signal transduction of VP/OT receptor.3. Furthermore, the existence of additional VP/OT receptor subtypes is discussed.


Trends in Pharmacological Sciences | 2003

Inverse agonism gains weight

Roger A.H. Adan; Martien J.H. Kas

Inverse agonism is emerging as a new endogenous principle for receptor regulation. Agouti-related protein (AgRP), following its release in the brain, stimulates food intake. AgRP binds to brain melanocortin receptors, which are involved in the regulation of body weight. In addition to antagonizing the effects of the melanocortin receptor agonist alpha-melanocyte-stimulating hormone (alpha-MSH), AgRP suppresses the constitutive activity of melanocortin MC(3) and MC(4) receptors, which characterizes AgRP as an inverse agonist rather than a neutral antagonist. The balance between the activity of AgRP-containing neurons and alpha-MSH-containing neurons determines the extent of activation of melanocortin receptors in neurons onto which they project. The identification of AgRP as an endogenous inverse agonist provides physiological relevance to inverse agonism in the control of body weight.


European Journal of Pharmacology | 1998

Melanocortins and cardiovascular regulation.

Dirk H.G. Versteeg; Patricia Van Bergen; Roger A.H. Adan; Dick J. De Wildt

The melanocortins form a family of pro-opiomelanocortin-derived peptides that have the melanocyte-stimulating hormone (MSH) core sequence, His-Phe-Arg-Trp, in common. Melanocortins have been described as having a variety of cardiovascular effects. We review here what is known about the sites and mechanisms of action of the melanocortins with respect to their effects on cardiovascular function, with special attention to the effects of the gamma-melanocyte-stimulating hormones (gamma-MSHs). This is done in the context of present knowledge about agonist selectivity and localisation of the five melanocortin receptor subtypes cloned so far. gamma2-MSH, its des-Gly12 analog (= gamma1-MSH) and Lys-gamma2-MSH are 5-10 times more potent than adrenocorticotropic hormone-(4-10)(ACTH-(4-10)) to induce a pressor and tachycardiac effect following intravenous administration. The Arg-Phe sequence near the C-terminal seems to be important for full in vivo intrinsic activity. Related peptides with a C-terminal extension with (gamma3-MSH) or without the Arg-Phe sequence (alpha-MSH, as well as the potent alpha-MSH analog, [Nle4,D-Phe7]alpha-MSH), are, however, devoid of these effects. In contrast, ACTH-(1-24) has a depressor effect combined with a tachycardiac effect, effects which are not dependent on the presence of the adrenals. Although the melanocortin MC3 receptor is the only melanocortin receptor subtype for which gamma2-MSH is selective, in vivo and in vitro structure-activity data indicate that it is not via this receptor that this peptide and related peptides exert either their pressor and tachycardiac effects or their extra- and intracranial blood flow increasing effect. We review evidence that the pressor and tachycardiac effects of the gamma-MSHs are due to an increase of sympathetic outflow to the vasculature and the heart, secondary to activation of centrally located receptors. These receptors are most likely localised in the anteroventral third ventricle (AV3V) region, a brain region situated outside the blood-brain barrier, and to which circulating peptides have access. These receptors might be melanocortin receptors of a subtype yet to be identified. Alternatively, they might be related to other receptors for which peptides with a C-terminal Arg-Phe sequence have affinity, such as the neuropeptide FF receptor and the recently discovered FMRFamide receptor. Melanocortin MC4 receptors and still unidentified receptors are part of the circuitry in the medulla oblongata which is involved in the depressor and bradycardiac effect of the melanocortins, probably via interference with autonomic outflow. Regarding the effects of the gamma-MSHs on cortical cerebral blood flow, it is not yet clear whether they involve activation of the sympathetic nervous system or activation of melanocortin receptors located on the cerebral vasculature. The depressor effect observed following intravenous administration of ACTH-(1-24) is thought to be due to activation of melanocortin MC2 receptors whose location may be within the peripheral vasculature. Melanocortins have been observed to improve cardiovascular function and survival time in experimental hemorrhagic shock in various species. Though ACTH-(1-24) is the most potent melanocortin in this model, alpha-MSH and [Nle4,D-Phe7]alpha-MSH and ACTH-(4-10) are quite effective as well. As ACTH-(4-10) is a rather weak agonist of all melanocortin receptors, it is difficult to determine via which of the melanocortin receptors the melanocortins bring about this effect. Research into the nature of the receptors involved in the various cardiovascular effects of the melanocortins would greatly benefit from the availability of selective melanocortin receptor antagonists.


European Journal of Pharmacology | 1999

Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

Roger A.H. Adan; Arkadiusz W Szklarczyk; Julia Oosterom; Jan H. Brakkee; Wouter Nijenhuis; Wim M. M. Schaaper; Rob H. Meloen; Willem Hendrik Gispen

Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined melanocortin-induced behavior in the rat: grooming behavior. We report here that [D-Tyr4]melanotan-II and RMI-2001 (Ac-cyclo-[Cys4, Gly5, D-Phe7, Cys10]alpha-MSH-NH2) have significantly higher affinity and potency on the rat melanocortin MC4 receptor as compared to the rat melanocortin MC3 receptor. Nle-gamma-MSH (melanocyte-stimulating hormone) was the only ligand with higher affinity and potency on the rat melanocortin MC3 receptor. The potency order of melanocortin MC4 receptor agonists, but not that of melanocortin MC3 receptor agonists, fitted with the potency of these ligands to stimulate grooming behavior, when administered intracerebroventricularly. SHU9119 (Ac-cyclo-[Nle4, Asp5, D-Nal(2)7, Lys10]alpha-MSH-(4-10)-NH2) and RMI-2005 (Ac-cyclo-[Cys4, Gly5, D-Na](2)7, Nal(2)9, Cys10]alpha-MSH-(4-10)-NH2) were able to inhibit alpha-MSH-induced melanocortin receptor activity in vitro, as well as alpha-MSH-induced grooming behavior. Melanotan-II, [Nle4-D-Phe7]alpha-MSH and RMI-2001 were also effective in inducing grooming behavior when administered intravenously. In the absence of purely selective melanocortin MC(3/4) receptor ligands, we demonstrated that careful comparison of ligand potencies in vitro with ligand potencies in vivo, could identify which melanocortin receptor subtype mediated alpha-MSH-induced grooming behavior. Furthermore, blockade of novelty-induced grooming behavior by SHU9119 demonstrated that this physiological stress response is mediated via activation of the melanocortin system.

Collaboration


Dive into the Roger A.H. Adan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge