Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger D. Newman-Norlund is active.

Publication


Featured researches published by Roger D. Newman-Norlund.


Psychological Science | 2012

Interplay Between Action and Movement Intentions During Social Interaction

Sasha Ondobaka; Floris P. de Lange; Roger D. Newman-Norlund; Michael Wiemers; Harold Bekkering

Observing the movements of another person influences the observer’s intention to execute similar movements. However, little is known about how action intentions formed prior to movement planning influence this effect. In the experiment reported here, we manipulated the congruency of movement intentions and action intentions in a pair of jointly acting individuals (i.e., a participant paired with a confederate coactor) and investigated how congruency influenced performance. Overall, participants initiated actions faster when they had the same action intention as the coactor (i.e., when participants and the coactor were pursuing the same conceptual goal). Participants’ responses were also faster when their and the coactor’s movement intentions were directed to the same spatial location, but only when participants had the same action intention as the coactor. These findings suggest that observers use the same representation to implement their own action intentions that they use to infer other people’s action intentions and also that a dynamic, multitiered intentional mechanism is involved in the processing of other people’s actions.


Brain Research | 2010

The role of inferior frontal and parietal areas in differentiating meaningful and meaningless object-directed actions

Roger D. Newman-Norlund; Hein T. van Schie; Marline E.C. van Hoek; Rh Raymond Cuijpers; Harold Bekkering

Over the past two decades single cell recordings in primates and neuroimaging experiments in humans have uncovered the key properties of visuo-motor mirror neurons located in monkey premotor cortex and parietal cortices as well as homologous areas in the human inferior frontal and inferior parietal cortices which presumably house neurons with similar response properties. One of the most interesting claims regarding the human mirror neuron system (MNS) is that its activity reflects high-level action understanding. If this was the case, one would expect signal in the MNS to differentiate between meaningful and meaningless actions. In the current experiment we tested this prediction using a novel paradigm. Functional magnetic resonance images were collected while participants viewed (i) short films of object-directed actions (ODAs) which were either semantically meaningful, i.e. a hand pressed a stapler or semantically meaningless, i.e. a foot pressed a stapler, (ii) short films of pantomimed actions and (iii) static pictures of objects. Consistent with the notion that the MNS represents high-level action understanding, meaningful and meaningless actions elicited BOLD signal differences at bilateral sites in the supramarginal gyrus (SMG) of the inferior parietal lobule (IPL) where we observed a double dissociation between BOLD response and meaningfullness of actions. Comparison of superadditive responses in the inferior frontal gyrus (IFG) and IPL (supramarginal) regions revealed differential contributions to action understanding. These data further specify the role of specific components of the MNS in understanding object-directed actions.


Vision Research | 2011

Simulation during observation of human actions - Theories, empirical studies, applications

Karen Zentgraf; Jörn Munzert; Matthias Bischoff; Roger D. Newman-Norlund

Historically, data from brain imaging and brain stimulation studies have supported the idea that the processing of observed actions recruits - among other areas - a distinct sub-set of brain sites in the sensory and motor cortices. These empirical findings have initially been linked with the thesis of direct matching as a mechanism of action understanding, i.e., the idea of motor resonance implemented by mirror neurons. In more recent approaches, it has been proposed that the mirror neuron system plays a role in minimizing prediction error when inferring the most likely cause of an observed action. According to these theories, motor resonance is thought to function as predictive coding. Other theoretical accounts suggest that action understanding might result from a hypothesis testing mechanism in which potential goals are continually fed into the system until the correct one is identified. In this review, we will explore the relationship of these theories to specific empirical findings. Finally, we will discuss the implications of these theoretical structures on action observation-based approaches to the optimization of skilled performance in athletes and patients.


Journal of Cognitive Neuroscience | 2006

Anatomical Substrates of Visual and Auditory Miniature Second-language Learning

Roger D. Newman-Norlund; Scott H. Frey; Laura-Ann Petitto; Scott T. Grafton

Longitudinal changes in brain activity during second language (L2) acquisition of a miniature finite-state grammar, named Wernickese, were identified with functional magnetic resonance imaging (fMRI). Participants learned either a visual sign language form or an auditory-verbal form to equivalent proficiency levels. Brain activity during sentence comprehension while hearing/viewing stimuli was assessed at low, medium, and high levels of proficiency in three separate fMRI sessions. Activation in the left inferior frontal gyrus (Brocas area) correlated positively with improving L2 proficiency, whereas activity in the right-hemisphere (RH) homologue was negatively correlated for both auditory and visual forms of the language. Activity in sequence learning areas including the premotor cortex and putamen also correlated with L2 proficiency. Modality-specific differences in the blood oxygenation level-dependent signal accompanying L2 acquisition were localized to the planum temporale (PT). Participants learning the auditory form exhibited decreasing reliance on bilateral PT sites across sessions. In the visual form, bilateral PT sites increased in activity between Session 1 and Session 2, then decreased in left PT activity from Session 2 to Session 3. Comparison of L2 laterality (as compared to L1 laterality) in auditory and visual groups failed to demonstrate greater RH lateralization for the visual versus auditory L2. These data establish a common role for Brocas area in language acquisition irrespective of the perceptual form of the language and suggest that L2s are processed similar to first languages even when learned after the critical period. The right frontal cortex was not preferentially recruited by visual language after accounting for phonetic/structural complexity and performance.


Frontiers in Behavioral Neuroscience | 2010

Virtual lesions of the IFG abolish response facilitation for biological and non-biological cues

Roger D. Newman-Norlund; Sasha Ondobaka; Hein T. van Schie; Gijs van Elswijk; Harold Bekkering

Humans are faster to perform a given action following observation of that same action. Converging evidence suggests that the human mirror neuron system (MNS) plays an important role in this phenomenon. However, the specificity of the neural mechanisms governing this effect remain controversial. Specialist theories of imitation suggest that biological cues are maximally capable of eliciting imitative facilitation. Generalist models, on the other hand, posit a broader role for the MNS in linking visual stimuli with appropriate responses. In the present study, we investigated the validity of these two theoretical approaches by disrupting the left and right inferior frontal gyrus (IFG) during the preparation of congruent (imitative) and incongruent (complementary) actions cued by either biological (hand) or non-biological (static dot) stimuli. Delivery of TMS over IFG abolished imitative response facilitation. Critically, this effect was identical whether actions were cued by biological or non-biological stimuli. This finding argues against theories of imitation in which biological stimuli are treated preferentially and stresses the notion of the IFG as a vital center of general perception–action coupling in the human brain.


BMJ Open | 2014

Neural biomarkers for assessing different types of imagery in pictorial health warning labels for cigarette packaging: a cross-sectional study.

Roger D. Newman-Norlund; James F. Thrasher; Johann Fridriksson; William J. Brixius; Brett Froeliger; David Hammond; Michael K Cummings

Objective Countries around the world have increasingly adopted pictorial health warning labels (HWLs) for tobacco packages to warn consumers about smoking-related risks. Research on how pictorial HWLs work has primarily analysed self-reported responses to HWLs; studies at the neural level comparing the brains response to different types of HWLs may provide an important complement to prior studies, especially if self-reported responses are systematically biased. In this study we characterise the brains response to three types of pictorial HWLs for which prior self-report studies indicated different levels of efficacy. Methods Current smokers rated pictorial HWLs and then observed the same HWLs during functional MRI (fMRI) scanning. Fifty 18–50-year-old current adult smokers who were free from neurological disorders were recruited from the general population and participated in the study. Demographics, smoking-related behaviours and self-reported ratings of pictorial HWL stimuli were obtained prior to scanning. Brain responses to HWLs were assessed using fMRI, focusing on a priori regions of interest. Results Pictorial HWL stimuli elicited activation in a broad network of brain areas associated with visual processing and emotion. Participants who rated the stimuli as more emotionally arousing also showed greater neural responses at these sites. Conclusions Self-reported ratings of pictorial HWLs are correlated with neural responses in brain areas associated with visual and emotional processing. Study results cross-validate self-reported ratings of pictorial HWLs and provide insights into how pictorial HWLs are processed.


Social Cognitive and Affective Neuroscience | 2016

Neural response to pictorial health warning labels can predict smoking behavioral change

Philip J. Riddle; Roger D. Newman-Norlund; Jessica Baer; James F. Thrasher

In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants’ self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals’ intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers).


Frontiers in Human Neuroscience | 2014

Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation.

Raymond J. Butts; Melissa B. Kolar; Roger D. Newman-Norlund

Individuals suffering from motor impairments often require physical therapy (PT) to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS) and bihemispheric transcranial direct current stimulation (tDCS) may increase the speed and extent of motor learning/relearning. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-h, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15) or control group (n = 12). iTBS (20 trains of 10 pulse triplets each delivered at 80% active motor threshold (AMT) / 50 Hz over 191.84 s) and bihemispheric tDCS (1.0 ma for 20 min) were used as a primer to, and in conjunction with, 20 min of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function (JTHF) test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-h post training (p = 0.055), and were significant at 7-days post training (p < 0.05). These results suggest that the combined iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.


PLOS ONE | 2013

Action Recognition Depends on Observer’s Level of Action Control and Social Personality Traits

Sasha Ondobaka; Roger D. Newman-Norlund; Floris P. de Lange; Harold Bekkering

Humans recognize both the movement (physical) goals and action (conceptual) goals of individuals with whom they are interacting. Here, we assessed whether spontaneous recognition of others’ goals depends on whether the observers control their own behavior at the movement or action level. We also examined the relationship between individual differences in empathy and ASD-like traits, and the processing of other individual’s movement and action goals that are known to be encoded in the “mirroring” and “mentalizing” brain networks. In order to address these questions, we used a computer-based card paradigm that made it possible to independently manipulate movement and action congruency of observed and executed actions. In separate blocks, participants were instructed to select either the right or left card (movement-control condition) or the higher or lower card (action-control condition), while we manipulated action- and movement-congruency of both actors’ goals. An action-congruency effect was present in all conditions and the size of this effect was significantly correlated with self-reported empathy and ASD-like traits. In contrast, movement-congruency effects were only present in the movement-control block and were strongly dependent on action-congruency. These results illustrate that spontaneous recognition of others’ behavior depends on the control scheme that is currently adopted by the observer. The findings suggest that deficits in action recognition are related to abnormal synthesis of perceived movements and prior conceptual knowledge that are associated with activations in the “mirroring” and “mentalizing” cortical networks.


Journal of Sport & Exercise Psychology | 2015

Biological Evidence of Imagery Abilities: Intraindividual Differences

Brian D. Seiler; Eva V. Monsma; Roger D. Newman-Norlund

This study extended motor imagery theories by establishing specificity and verification of expected brain activation patterns during imagery. Eighteen female participants screened with the Movement Imagery Questionnaire-3 (MIQ-3) as having good imagery abilities were scanned to determine the neural networks active during an arm rotation task. Four experimental conditions (i.e., KINESTHETIC, INTERNAL Perspective, EXTERNAL Perspective, and REST) were randomly presented (counterbalanced for condition) during three brain scans. Behaviorally, moderate interscale correlations were found between the MIQ-3 and Vividness of Movement Imagery Questionnaire-2, indicating relatedness between the questionnaires. Partially confirming our hypotheses, common and distinct brain activity provides initial biological validation for imagery abilities delineated in the MIQ-3: kinesthetic imagery activated motor-related areas, internal visual imagery activated inferior parietal lobule, and external visual imagery activated temporal, but no occipital areas. Lastly, inconsistent neuroanatomical intraindividual differences per condition were found. These findings relative to recent biological evidence of imagery abilities are highlighted.

Collaboration


Dive into the Roger D. Newman-Norlund's collaboration.

Top Co-Authors

Avatar

Harold Bekkering

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

James F. Thrasher

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett Froeliger

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Brian D. Seiler

Charleston Southern University

View shared research outputs
Top Co-Authors

Avatar

Chris Rorden

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Eva V. Monsma

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Johann Fridriksson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge