Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger David Norcross is active.

Publication


Featured researches published by Roger David Norcross.


Proceedings of the National Academy of Sciences of the United States of America | 2011

TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity

Florent G. Revel; Jean-Luc Moreau; Raul R. Gainetdinov; Amyaouch Bradaia; Tatyana D. Sotnikova; Roland Mory; Sean Durkin; Katrin Groebke Zbinden; Roger David Norcross; Claas Aiko Meyer; Veit Metzler; Sylvie Chaboz; Laurence Ozmen; Gerhard Trube; Bruno Pouzet; Bernhard Bettler; Marc G. Caron; Joseph G. Wettstein; Marius C. Hoener

The trace amine-associated receptor 1 (TAAR1), activated by endogenous metabolites of amino acids like the trace amines p-tyramine and β-phenylethylamine, has proven to be an important modulator of the dopaminergic system and is considered a promising target for the treatment of neuropsychiatric disorders. To decipher the brain functions of TAAR1, a selective TAAR1 agonist, RO5166017, was engineered. RO5166017 showed high affinity and potent functional activity at mouse, rat, cynomolgus monkey, and human TAAR1 stably expressed in HEK293 cells as well as high selectivity vs. other targets. In mouse brain slices, RO5166017 inhibited the firing frequency of dopaminergic and serotonergic neurons in regions where Taar1 is expressed (i.e., the ventral tegmental area and dorsal raphe nucleus, respectively). In contrast, RO5166017 did not change the firing frequency of noradrenergic neurons in the locus coeruleus, an area devoid of Taar1 expression. Furthermore, modulation of TAAR1 activity altered the desensitization rate and agonist potency at 5-HT1A receptors in the dorsal raphe, suggesting that TAAR1 modulates not only dopaminergic but also serotonergic neurotransmission. In WT but not Taar1−/− mice, RO5166017 prevented stress-induced hyperthermia and blocked dopamine-dependent hyperlocomotion in cocaine-treated and dopamine transporter knockout mice as well as hyperactivity induced by an NMDA antagonist. These results tie TAAR1 to the control of monoamine-driven behaviors and suggest anxiolytic- and antipsychotic-like properties for agonists such as RO5166017, opening treatment opportunities for psychiatric disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system.

Amyaouch Bradaia; Gerhard Trube; Henri Stalder; Roger David Norcross; Laurence Ozmen; Joseph G. Wettstein; Audrée Pinard; Danièle Buchy; Martin Gassmann; Marius C. Hoener; Bernhard Bettler

Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor (GPCR) that is nonselectively activated by endogenous metabolites of amino acids. TAAR1 is considered a promising drug target for the treatment of psychiatric and neurodegenerative disorders. However, no selective ligand to identify TAAR1-specific signaling mechanisms is available yet. Here we report a selective TAAR1 antagonist, EPPTB, and characterize its physiological effects at dopamine (DA) neurons of the ventral tegmental area (VTA). We show that EPPTB prevents the reduction of the firing frequency of DA neurons induced by p-tyramine (p-tyr), a nonselective TAAR1 agonist. When applied alone, EPPTB increases the firing frequency of DA neurons, suggesting that TAAR1 either exhibits constitutive activity or is tonically activated by ambient levels of endogenous agonist(s). We further show that EPPTB blocks the TAAR1-mediated activation of an inwardly rectifying K+ current. When applied alone, EPPTB induces an apparent inward current, suggesting the closure of tonically activated K+ channels. Importantly, these EPPTB effects were absent in Taar1 knockout mice, ruling out off-target effects. We additionally found that both the acute application of EPPTB and the constitutive genetic lack of TAAR1 increase the potency of DA at D2 receptors in DA neurons. In summary, our data support that TAAR1 tonically activates inwardly rectifying K+ channels, which reduces the basal firing frequency of DA neurons in the VTA. We hypothesize that the EPPTB-induced increase in the potency of DA at D2 receptors is part of a homeostatic feedback mechanism compensating for the lack of inhibitory TAAR1 tone.


Molecular Psychiatry | 2013

A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight.

Florent G. Revel; J-L Moreau; Bruno Pouzet; Roland Mory; Amyaouch Bradaia; D Buchy; Veit Metzler; Sylvie Chaboz; K Groebke Zbinden; Guido Galley; Roger David Norcross; D Tuerck; A Bruns; Stephen R. Morairty; Thomas S. Kilduff; Tanya L. Wallace; C Risterucci; Joseph G. Wettstein; Marius C. Hoener

Schizophrenia is a chronic, severe and highly complex mental illness. Current treatments manage the positive symptoms, yet have minimal effects on the negative and cognitive symptoms, two prominent features of the disease with critical impact on the long-term morbidity. In addition, antipsychotic treatments trigger serious side effects that precipitate treatment discontinuation. Here, we show that activation of the trace amine-associated receptor 1 (TAAR1), a modulator of monoaminergic neurotransmission, represents a novel therapeutic option. In rodents, activation of TAAR1 by two novel and pharmacologically distinct compounds, the full agonist RO5256390 and the partial agonist RO5263397, blocks psychostimulant-induced hyperactivity and produces a brain activation pattern reminiscent of the antipsychotic drug olanzapine, suggesting antipsychotic-like properties. TAAR1 agonists do not induce catalepsy or weight gain; RO5263397 even reduced haloperidol-induced catalepsy and prevented olanzapine from increasing body weight and fat accumulation. Finally, TAAR1 activation promotes vigilance in rats and shows pro-cognitive and antidepressant-like properties in rodent and primate models. These data suggest that TAAR1 agonists may provide a novel and differentiated treatment of schizophrenia as compared with current medication standards: TAAR1 agonists may improve not only the positive symptoms but also the negative symptoms and cognitive deficits, without causing adverse effects such as motor impairments or weight gain.


Journal of Medicinal Chemistry | 2010

Selective GlyT1 Inhibitors: Discovery of [4-(3-Fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl]-[5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a Promising Novel Medicine To Treat Schizophrenia

Emmanuel Pinard; Alexander Alanine; Daniela Alberati; Markus Bender; Edilio Borroni; Patrick Bourdeaux; Virginie Brom; Serge Burner; Holger Fischer; Dominik Hainzl; Remy Halm; Nicole Hauser; Synese Jolidon; Judith Lengyel; Hans-Peter Marty; Thierry Meyer; Jean-Luc Moreau; Roland Mory; Robert Narquizian; Mathias Nettekoven; Roger David Norcross; Bernd Puellmann; Philipp Schmid; Sebastien Schmitt; Henri Stalder; Roger Wermuth; Joseph G. Wettstein; Daniel Zimmerli

The GlyT1 transporter has emerged as a key novel target for the treatment of schizophrenia. Herein, we report on the optimization of the 2-alkoxy-5-methylsulfonebenzoylpiperazine class of GlyT1 inhibitors to improve hERG channel selectivity and brain penetration. This effort culminated in the discovery of compound 10a (RG1678), the first potent and selective GlyT1 inhibitor to have a beneficial effect in schizophrenic patients in a phase II clinical trial.


Biological Psychiatry | 2012

Trace Amine-Associated Receptor 1 Partial Agonism Reveals Novel Paradigm for Neuropsychiatric Therapeutics

Florent G. Revel; Jean-Luc Moreau; Raul R. Gainetdinov; Antonio Ferragud; Clara Velázquez-Sánchez; Tatyana D. Sotnikova; Stephen R. Morairty; Anja Harmeier; Katrin Groebke Zbinden; Roger David Norcross; Amyaouch Bradaia; Thomas S. Kilduff; Barbara Biemans; Bruno Pouzet; Marc G. Caron; Juan J. Canales; Tanya L. Wallace; Joseph G. Wettstein; Marius C. Hoener

BACKGROUND Trace amines, compounds structurally related to classical biogenic amines, represent endogenous ligands of the trace amine-associated receptor 1 (TAAR1). Because trace amines also influence the activity of other targets, selective ligands are needed for the elucidation of TAAR1 function. Here we report on the identification and characterization of the first selective and potent TAAR1 partial agonist. METHODS The TAAR1 partial agonist RO5203648 was evaluated for its binding affinity and functional activity at rodent and primate TAAR1 receptors stably expressed in HEK293 cells, for its physicochemical and pharmacokinetic properties, for its effects on the firing frequency of monoaminergic neurons ex vivo, and for its properties in vivo with genetic and pharmacological models of central nervous system disorders. RESULTS RO5203648 showed high affinity and potency at TAAR1, high selectivity versus other targets, and favorable pharmacokinetic properties. In mouse brain slices, RO5203648 increased the firing frequency of dopaminergic and serotonergic neurons in the ventral tegmental area and the dorsal raphe nucleus, respectively. In various behavioral paradigms in rodents and monkeys, RO5203648 demonstrated clear antipsychotic- and antidepressant-like activities as well as potential anxiolytic-like properties. Furthermore, it attenuated drug-taking behavior and was highly effective in promoting attention, cognitive performance, and wakefulness. CONCLUSIONS With the first potent and selective TAAR1 partial agonist, RO5203648, we show that TAAR1 is implicated in a broad range of relevant physiological, behavioral, and cognitive neuropsychiatric dimensions. Collectively, these data uncover important neuromodulatory roles for TAAR1 and suggest that agonists at this receptor might have therapeutic potential in one or more neuropsychiatric domains.


Neuropsychopharmacology | 2012

Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine.

Florent G. Revel; Claas Aiko Meyer; Amyaouch Bradaia; Karine Jeanneau; Eleonora Calcagno; Cédric B. André; Markus Haenggi; Marie Thérèse Miss; Guido Galley; Roger David Norcross; Roberto W. Invernizzi; Joseph G. Wettstein; Jean Luc Moreau; Marius C. Hoener

Trace amines (TAs) such as β-phenylethylamine, p-tyramine, or tryptamine are biogenic amines found in the brain at low concentrations that have been implicated in various neuropsychiatric disorders like schizophrenia, depression, or attention deficit hyperactivity disorder. TAs are ligands for the recently identified trace amine-associated receptor 1 (TAAR1), an important modulator of monoamine neurotransmission. Here, we sought to investigate the consequences of TAAR1 hypersignaling by generating a transgenic mouse line overexpressing Taar1 specifically in neurons. Taar1 transgenic mice did not show overt behavioral abnormalities under baseline conditions, despite augmented extracellular levels of dopamine and noradrenaline in the accumbens nucleus (Acb) and of serotonin in the medial prefrontal cortex. In vitro, this was correlated with an elevated spontaneous firing rate of monoaminergic neurons in the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus as the result of ectopic TAAR1 expression. Furthermore, Taar1 transgenic mice were hyposensitive to the psychostimulant effects of amphetamine, as it produced only a weak locomotor activation and failed to alter catecholamine release in the Acb. Attenuating TAAR1 activity with the selective partial agonist RO5073012 restored the stimulating effects of amphetamine on locomotion. Overall, these data show that Taar1 brain overexpression causes hyposensitivity to amphetamine and alterations of monoaminergic neurotransmission. These observations confirm the modulatory role of TAAR1 on monoamine activity and suggest that in vivo the receptor is either constitutively active and/or tonically activated by ambient levels of endogenous agonist(s).


Bioorganic & Medicinal Chemistry Letters | 2012

Optimisation of imidazole compounds as selective TAAR1 agonists: Discovery of RO5073012

Guido Galley; Henri Stalder; Annick Goergler; Marius C. Hoener; Roger David Norcross

A series of imidazole compounds has been identified which affords potent and selective partial and full agonists of the TAAR1 receptor. Starting from 2-benzyl-imidazoline screening hits, a series of structurally related 2-benzyl- and 4-benzyl-imidazoles was investigated first, but it proved highly challenging to obtain compounds having sufficient selectivity against the adrenergic alpha 2 receptor. This issue could be successfully addressed by modification of the linker region and SAR exploration led to the discovery of highly selective isopropyl-substituted 4-aminomethyl-imidazole compounds. The work culminated in the identification of the selective TAAR1 partial agonist RO5073012 (4-chlorophenyl)-(1H-imidazol-4-ylmethyl)-isopropyl-amine, 24), which has a good pharmacokinetic profile after oral administration in rodents. RO5073012 has been found to be active in a behavioural rat model which is considered indicative for schizophrenia.


Bioorganic & Medicinal Chemistry Letters | 2011

Selective antagonists of mouse trace amine-associated receptor 1 (mTAAR1): discovery of EPPTB (RO5212773).

Henri Stalder; Marius C. Hoener; Roger David Norcross

High throughput screening of the Roche compound library identified benzanilides such as 1 and 2 as antagonists of TAAR1. Optimisation of this hit series led to the first selective TAAR1 antagonist (N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide EPPTB (RO5212773, 9f) having IC(50) of 28 nM at mouse TAAR1.


Molecular metabolism | 2016

Incretin-like effects of small molecule trace amine-associated receptor 1 agonists

Susanne Raab; Haiyan Wang; Sabine Uhles; Nadine Colé; Basil Künnecke; Christoph Ullmer; Hugues Matile; Marc Bedoucha; Roger David Norcross; Nickki Ottaway-Parker; Diego Perez-Tilve; Karin Conde Knape; Matthias H. Tschöp; Marius C. Hoener; Sabine Sewing

Objective Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight. Methods We investigated the peripheral human tissue distribution of TAAR1 by immunohistochemistry and tested the effect of a small molecule TAAR1 agonist on insulin secretion in vitro using INS1E cells and human islets and on glucose tolerance in C57Bl6, and db/db mice. Body weight effects were investigated in obese DIO mice. Results TAAR1 activation by a selective small molecule agonist increased glucose-dependent insulin secretion in INS1E cells and human islets and elevated plasma PYY and GLP-1 levels in mice. In diabetic db/db mice, the TAAR1 agonist normalized glucose excursion during an oral glucose tolerance test. Sub-chronic treatment of diet-induced obese (DIO) mice with the TAAR1 agonist resulted in reduced food intake and body weight. Furthermore insulin sensitivity was improved and plasma triglyceride levels and liver triglyceride content were lower than in controls. Conclusions We have identified TAAR1 as a novel integrator of metabolic control, which acts on gastrointestinal and pancreatic islet hormone secretion. Thus TAAR1 qualifies as a novel and promising target for the treatment of type 2 diabetes and obesity.


Journal of Pharmacology and Experimental Therapeutics | 2015

A UGT2B10 splicing polymorphism common in African populations may greatly increase drug exposure.

Stephen Fowler; Heidemarie Kletzl; Moshe Finel; Nenad Manevski; Paul Schmid; Dietrich Tuerck; Roger David Norcross; Marius C. Hoener; Olivia Spleiss; Victor A. Iglesias

RO5263397 [(S)-4-(3-fluoro-2-methyl-phenyl)-4,5-dihydro-oxazol-2-ylamine], a new compound that showed promising results in animal models of schizophrenia, is mainly metabolized in humans by N-glucuronidation. Enzyme studies, using the (then) available commercial uridine 5′-diphosphate-glucuronosyltransferases (UGTs), suggested that UGT1A4 is responsible for its conjugation. In the first clinical trial, in which RO5263397 was administered orally to healthy human volunteers, a 136-fold above-average systemic exposure to the parent compound was found in one of the participants. Further administration in this trial identified two more such poor metabolizers, all three of African origin. Additional in vitro studies with recombinant UGTs showed that the contribution of UGT2B10 to RO5263397 glucuronidation is much higher than UGT1A4 at clinically relevant concentrations. DNA sequencing in all of these poor metabolizers identified a previously uncharacterized splice site mutation that prevents assembly of full-length UGT2B10 mRNA and thus functional UGT2B10 protein expression. Further DNA database analyses revealed the UGT2B10 splice site mutation to be highly frequent in individuals of African origin (45%), moderately frequent in Asians (8%) and almost unrepresented in Caucasians (<1%). A prospective study using hepatocytes from 20 individual African donors demonstrated a >100-fold lower intrinsic clearance of RO5263397 in cells homozygous for the splice site variant allele. Our results highlight the need to include UGT2B10 when screening the human UGTs for the enzymes involved in the glucuronidation of a new compound, particularly when there is a possibility of N-glucuronidation. Moreover, this study demonstrates the importance of considering different ethnicities during drug development.

Collaboration


Dive into the Roger David Norcross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge