Roger E. McLendon
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger E. McLendon.
Nature | 2006
Shideng Bao; Qiulian Wu; Roger E. McLendon; Yueling Hao; Qing Shi; Anita B. Hjelmeland; Mark W. Dewhirst; Darell D. Bigner; Jeremy N. Rich
Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.
Science | 2008
D. Williams Parsons; Siân Jones; Xiaosong Zhang; Jimmy Lin; Rebecca J. Leary; Philipp Angenendt; Parminder Mankoo; Hannah Carter; I-Mei Siu; Gary L. Gallia; Alessandro Olivi; Roger E. McLendon; B. Ahmed Rasheed; Stephen T. Keir; Tatiana Nikolskaya; Yuri Nikolsky; Dana Busam; Hanna Tekleab; Luis A. Diaz; James Hartigan; Doug Smith; Robert L. Strausberg; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Hai Yan; Gregory J. Riggins; Darell D. Bigner; Rachel Karchin; Nick Papadopoulos; Giovanni Parmigiani
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.
The New England Journal of Medicine | 2009
Hai Yan; D. Williams Parsons; Genglin Jin; Roger E. McLendon; B. Ahmed Rasheed; Weishi Yuan; Ivan Kos; Ines Batinic-Haberle; Siân Jones; Gregory J. Riggins; Henry S. Friedman; Allan H. Friedman; David A. Reardon; James E. Herndon; Kenneth W. Kinzler; Victor E. Velculescu; Bert Vogelstein; Darell D. Bigner
BACKGROUND A recent genomewide mutational analysis of glioblastomas (World Health Organization [WHO] grade IV glioma) revealed somatic mutations of the isocitrate dehydrogenase 1 gene (IDH1) in a fraction of such tumors, most frequently in tumors that were known to have evolved from lower-grade gliomas (secondary glioblastomas). METHODS We determined the sequence of the IDH1 gene and the related IDH2 gene in 445 central nervous system (CNS) tumors and 494 non-CNS tumors. The enzymatic activity of the proteins that were produced from normal and mutant IDH1 and IDH2 genes was determined in cultured glioma cells that were transfected with these genes. RESULTS We identified mutations that affected amino acid 132 of IDH1 in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes. Each of four tested IDH1 and IDH2 mutations reduced the enzymatic activity of the encoded protein. CONCLUSIONS Mutations of NADP(+)-dependent isocitrate dehydrogenases encoded by IDH1 and IDH2 occur in a majority of several types of malignant gliomas.
Cancer Research | 2006
Shideng Bao; Qiulian Wu; Sith Sathornsumetee; Yueling Hao; Zhizhong Li; Anita B. Hjelmeland; Qing Shi; Roger E. McLendon; Darell D. Bigner; Jeremy N. Rich
Malignant gliomas are highly lethal cancers dependent on angiogenesis. Critical tumor subpopulations within gliomas share characteristics with neural stem cells. We examined the potential of stem cell-like glioma cells (SCLGC) to support tumor angiogenesis. SCLGC isolated from human glioblastoma biopsy specimens and xenografts potently generated tumors when implanted into the brains of immunocompromised mice, whereas non-SCLGC tumor cells isolated from only a few tumors formed secondary tumors when xenotransplanted. Tumors derived from SCLGC were morphologically distinguishable from non-SCLGC tumor populations by widespread tumor angiogenesis, necrosis, and hemorrhage. To determine a potential molecular mechanism for SCLGC in angiogenesis, we measured the expression of a panel of angiogenic factors secreted by SCLGC. In comparison with matched non-SCLGC populations, SCLGC consistently secreted markedly elevated levels of vascular endothelial growth factor (VEGF), which were further induced by hypoxia. In an in vitro model of angiogenesis, SCLGC-conditioned medium significantly increased endothelial cell migration and tube formation compared with non-SCLGC tumor cell-conditioned medium. The proangiogenic effects of glioma SCLGC on endothelial cells were specifically abolished by the anti-VEGF neutralizing antibody bevacizumab, which is in clinical use for cancer therapy. Furthermore, bevacizumab displayed potent antiangiogenic efficacy in vivo and suppressed growth of xenografts derived from SCLGC but limited efficacy against xenografts derived from a matched non-SCLGC population. Together these data indicate that stem cell-like tumor cells can be a crucial source of key angiogenic factors in cancers and that targeting proangiogenic factors from stem cell-like tumor populations may be critical for patient therapy.
Cancer Cell | 2009
Zhizhong Li; Shideng Bao; Qiulian Wu; Hui Wang; Christine E. Eyler; Sith Sathornsumetee; Qing Shi; Yiting Cao; Justin D. Lathia; Roger E. McLendon; Anita B. Hjelmeland; Jeremy N. Rich
Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). Because hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor cells and normal neural progenitors. In tumor specimens, HIF2alpha colocalizes with cancer stem cell markers. Targeting HIFs in GSCs inhibits self-renewal, proliferation, and survival in vitro, and attenuates tumor initiation potential of GSCs in vivo. Analysis of a molecular database reveals that HIF2A expression correlates with poor glioma patient survival. Our results demonstrate that GSCs differentially respond to hypoxia with distinct HIF induction patterns, and HIF2alpha might represent a promising target for antiglioblastoma therapies.
Journal of Clinical Oncology | 2004
Jeremy N. Rich; David A. Reardon; Terry S. Peery; Jeannette M. Dowell; Jennifer A. Quinn; Kara Penne; Carol J. Wikstrand; Lauren B. Van Duyn; Janet E. Dancey; Roger E. McLendon; James C. Kao; Timothy T. Stenzel; B. Ahmed Rasheed; Sandra Tourt-Uhlig; James E. Herndon; James J. Vredenburgh; John H. Sampson; Allan H. Friedman; Darell D. Bigner; Henry S. Friedman
PURPOSE To evaluate the efficacy and tolerability of gefitinib (ZD1839, Iressa; AstraZeneca, Wilmington, DE), a novel epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. PATIENTS AND METHODS This was an open-label, single-center phase II trial. Fifty-seven patients with first recurrence of a glioblastoma who were previously treated with surgical resection, radiation, and usually chemotherapy underwent an open biopsy or resection at evaluation for confirmation of tumor recurrence. Each patient initially received 500 mg of gefitinib orally once daily; dose escalation to 750 mg then 1,000 mg, if a patient received enzyme-inducing antiepileptic drugs or dexamethasone, was allowed within each patient. RESULTS Although no objective tumor responses were seen among the 53 assessable patients, only 21% of patients (11 of 53 patients) had measurable disease at treatment initiation. Seventeen percent of patients (nine of 53 patients) underwent at least six 4-week cycles, and the 6-month event-free survival (EFS) was 13% (seven of 53 patients). The median EFS time was 8.1 weeks, and the median overall survival (OS) time from treatment initiation was 39.4 weeks. Adverse events were generally mild (grade 1 or 2) and consisted mainly of skin reactions and diarrhea. Drug-related toxicities were more frequent at higher doses. Withdrawal caused by drug-related adverse events occurred in 6% of patients (three of 53 patients). Although the presence of diarrhea positively predicted favorable OS from treatment initiation, epidermal growth factor receptor expression did not correlate with either EFS or OS. CONCLUSION Gefitinib is well tolerated and has activity in patients with recurrent glioblastoma. Further study of this agent at higher doses is warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Patrick J. Killela; Zachary J. Reitman; Yuchen Jiao; Chetan Bettegowda; Nishant Agrawal; Luis A. Diaz; Allan H. Friedman; Henry S. Friedman; Gary L. Gallia; Beppino C. Giovanella; Arthur P. Grollman; Tong-Chuan He; Yiping He; Ralph H. Hruban; George I. Jallo; Nils Mandahl; Alan K. Meeker; Fredrik Mertens; George J. Netto; B. Ahmed Rasheed; Gregory J. Riggins; Thomas A. Rosenquist; Mark Schiffman; Ie Ming Shih; Dan Theodorescu; Michael Torbenson; Victor E. Velculescu; Tian Li Wang; Nicolas Wentzensen; Laura D. Wood
Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.
Science | 2011
D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran
Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
Journal of Clinical Oncology | 2010
John H. Sampson; Amy B. Heimberger; Gary E. Archer; Kenneth D. Aldape; Allan H. Friedman; Henry S. Friedman; Mark R. Gilbert; James E. Herndon; Roger E. McLendon; Duane Mitchell; David A. Reardon; Raymond Sawaya; Robert J. Schmittling; Weiming Shi; James J. Vredenburgh; Darell D. Bigner
PURPOSE Immunologic targeting of tumor-specific gene mutations may allow precise eradication of neoplastic cells without toxicity. Epidermal growth factor receptor variant III (EGFRvIII) is a constitutively activated and immunogenic mutation not expressed in normal tissues but widely expressed in glioblastoma multiforme (GBM) and other neoplasms. PATIENTS AND METHODS A phase II, multicenter trial was undertaken to assess the immunogenicity of an EGFRvIII-targeted peptide vaccine and to estimate the progression-free survival (PFS) and overall survival (OS) of vaccinated patients with newly diagnosed EGFRvIII-expressing GBM with minimal residual disease. Intradermal vaccinations were given until toxicity or tumor progression was observed. Sample size was calculated to differentiate between PFS rates of 20% and 40% 6 months after vaccination. RESULTS There were no symptomatic autoimmune reactions. The 6-month PFS rate after vaccination was 67% (95% CI, 40% to 83%) and after diagnosis was 94% (95% CI, 67% to 99%; n = 18). The median OS was 26.0 months (95% CI, 21.0 to 47.7 months). After adjustment for age and Karnofsky performance status, the OS of vaccinated patients was greater than that observed in a control group matched for eligibility criteria, prognostic factors, and temozolomide treatment (hazard ratio, 5.3; P = .0013; n = 17). The development of specific antibody (P = .025) or delayed-type hypersensitivity (P = .03) responses to EGFRvIII had a significant effect on OS. At recurrence, 82% (95% CI, 48% to 97%) of patients had lost EGFRvIII expression (P < .001). CONCLUSION EGFRvIII-targeted vaccination in patients with GBM warrants investigation in a phase III, randomized trial.
Science | 2011
Christopher M. Heaphy; Roeland F. De Wilde; Yuchen Jiao; Alison P. Klein; Barish H. Edil; Chanjuan Shi; Chetan Bettegowda; Fausto J. Rodriguez; Charles G. Eberhart; Sachidanand Hebbar; G. Johan A. Offerhaus; Roger E. McLendon; B. Ahmed Rasheed; Yiping He; Hai Yan; Darell D. Bigner; Sueli Mieko Oba-Shinjo; Suely Kazue Nagahashi Marie; Gregory J. Riggins; Kenneth W. Kinzler; Bert Vogelstein; Ralph H. Hruban; Anirban Maitra; Nickolas Papadopoulos; Alan K. Meeker
Chromosome tips seem to be maintained by an unusual mechanism in tumors that have mutations in chromatin remodeling genes. The proteins encoded by ATRX and DAXX participate in chromatin remodeling at telomeres and other genomic sites. Because inactivating mutations of these genes are common in human pancreatic neuroendocrine tumors (PanNETs), we examined the telomere status of these tumors. We found that 61% of PanNETs displayed abnormal telomeres that are characteristic of a telomerase-independent telomere maintenance mechanism termed ALT (alternative lengthening of telomeres). All of the PanNETs exhibiting these abnormal telomeres had ATRX or DAXX mutations or loss of nuclear ATRX or DAXX protein. ATRX mutations also correlate with abnormal telomeres in tumors of the central nervous system. These data suggest that an alternative telomere maintenance function may operate in human tumors with alterations in the ATRX or DAXX genes.