Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger G. Sturmey is active.

Publication


Featured researches published by Roger G. Sturmey.


Reproduction in Domestic Animals | 2009

Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development

Roger G. Sturmey; A Reis; Henry J. Leese; Tg McEvoy

While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.


Molecular Human Reproduction | 2008

Metabolism of the viable mammalian embryo: quietness revisited

Henry J. Leese; Christoph G. Baumann; Daniel R. Brison; Tom G. McEvoy; Roger G. Sturmey

This review examines the ‘Quiet Embryo Hypothesis’ which proposes that viable preimplantation embryos operate at metabolite or nutrient turnover rates distributed within lower ranges than those of their less viable counterparts. The ‘quieter’ metabolism consistent with this hypothesis is considered in terms of (i) ‘functional’ quietness; the contrasting levels of intrinsic metabolic activity in different cell types as a consequence of their specialized functions, (ii) inter-individual embryo/cell differences in metabolism and (iii) loss of quietness in response to environmental stress. Data are reviewed which indicate that gametes and early embryos function in vivo at a lower temperature than core body temperature, which could encourage the expression of a quiet metabolism. We call for research to determine the optimum temperature for mammalian gamete/embryo culture. The review concludes by examining the key role of reactive oxygen species, which can induce molecular damage, trigger a cellular stress response and lead to a loss of quietness.


PLOS ONE | 2011

Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.

Veerle Van Hoeck; Roger G. Sturmey; Pablo Bermejo-Alvarez; D. Rizos; Alfonso Gutierrez-Adan; Henry J. Leese; Peter Bols; Jo Leroy

Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism.


Reproduction | 2006

Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte

Roger G. Sturmey; O'Toole Pj; Henry J. Leese

The role of endogenous lipid in the provision of energy during in vitro maturation of immature porcine oocytes has been studied. Fluorescence resonance energy transfer (FRET) acceptor bleaching methods have been used to examine mitochondrial:lipid droplet co-localisation in live oocytes. FRET experiments demonstrate whether organelles are within the FRET-distance (i.e. 6-10 nm), thus showing true association on a molecular scale. Immature and in vitro-matured porcine oocytes were stained with Mitotracker Green (MTG; mitochondria) and Nile Red (NR; lipid droplets). The data indicated sufficient overlap between MTG emission and NR excitation to support a FRET reaction and that mitochondria and lipid droplets were sufficiently co-localised for a FRET reaction to occur. When NR-stained lipid droplets were specifically bleached, a significant increase in the MTG signal in stained mitochondria was observed (FRET efficiency, E=22.2 +/- 3.18%). These results strongly suggest a metabolic role for lipid metabolism during oocyte maturation. This conclusion was reinforced by the use of inhibitors of fatty acid beta-oxidation, methyl palmoxirate or mercaptoacetate, exposure to which during oocyte maturation led to developmental failure post-fertilisation. These data provide strong evidence that MTG and NR can act as a FRET pair and that in porcine oocytes, mitochondria and lipid droplets lie within 6-10 nm of each other, indicating association on a molecular scale. The findings also suggest that endogenous triglycerides play an important role in energy metabolism during porcine in vitro maturation.


Molecular Reproduction and Development | 2010

Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability

Roger G. Sturmey; Pablo Bermejo-Alvarez; Alfonso Gutierrez-Adan; D. Rizos; Henry J. Leese; P. Lonergan

The ratio of male/female embryos may be modified by environmental factors such as maternal diet in vivo and the composition of embryo culture media in vitro. We have used amino acid profiling, a noninvasive marker of developmental potential to compare the effect of sex on the metabolism of bovine blastocysts conceived in vivo and in vitro. Blastocysts were incubated individually for 24 hr in a close‐to‐physiological mixture of amino acids and the depletion or appearance of 18 amino acids measured using HPLC. Blastocysts were then sexed by PCR. Amino acid depletion by in vitro‐produced blastocysts and expanded blastocysts was higher than in embryos conceived in vivo (P = 0.02). When cultured in vitro, female embryos exhibited increased depletion of arginine, glutamate, and methionine and appearance of glycine, while male embryos displayed increased depletion of phenylalanine, tyrosine, and valine. Overall, in vitro‐produced blastocysts exhibited sex‐specific differences in metabolic profiles of 7 out of 18 amino acids; in vivo‐produced, in 2 out of 18. These differences had disappeared by the expanded blastocyst stages. We have also shown that amino acid metabolism can predict the ability of bovine zygotes to develop to the blastocyst stage, providing “proof of principle” for the use of this technology in clinical IVF to select single embryos for transfer and thereby avoid the problem of multiple births. Mol. Reprod. Dev. 77: 285–296, 2010.


Reproduction, Fertility and Development | 2012

The role of fatty acids in oocyte and early embryo development

Paul McKeegan; Roger G. Sturmey

Growing evidence suggests that endogenous and exogenous fatty acids play diverse roles in developing mammalian oocytes and early embryos. In this review, we describe some of the regulatory roles of fatty acids in early development, in addition to their metabolic functions. We focus initially on the provision of individual fatty acids, and then discuss how these might affect metabolism, oxidative stress, membrane composition, cell signalling events and gene expression. We propose that ongoing research should focus on physiologically relevant ratios and combinations of fatty acids, rather than isolated individual fatty acids, as their combined roles are both subtle and complex. Changing the ratio of specific fatty acids in the diet of animal models, and in vitro culture medium can cause significant dysregulation of cellular processes and development, an issue that extends to human fertility.


Reproduction, Fertility and Development | 2012

Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility

Jo Leroy; D. Rizos; Roger G. Sturmey; Philippe Bossaert; Alfonso Gutierrez-Adan; V. Van Hoeck; S. Valckx; Peter Bols

Reduced oocyte and embryo quality are recognised as major factors in the problem of disappointing fertility in high producing dairy cows. This review aims to shed more light on the importance of the intrafollicular environment in the subfertility problem in dairy cows. Metabolic disturbances associated with negative energy balance (NEB) early postpartum are associated with ovarian dysfunction. Changes in the growth pattern of the ovarian follicle during a period of NEB can indirectly affect oocyte quality. Furthermore, a maternal metabolic disorder (linked with NEB or nutritionally induced) may alter the endocrine and biochemical composition of the follicular fluid, the micro-environment of the growing and maturing female gamete. The maturing oocyte is very sensitive to any perturbation in its direct environment and in vitro maturation models revealed that some of these metabolic changes reduce the oocytes developmental competence. Also, embryo quality is significantly reduced due to maturation in adverse conditions. Well balanced and timed oocyte metabolism and gene expression are crucial to safeguard an optimal oocyte development. In that perspective, metabolome and transcriptome parameters of the oocyte may serve to predict reproductive success rates. Finally, there is growing evidence that adverse conditions for oocyte growth and maturation may also jeopardise the health and performance of the offspring.


Human Reproduction | 2015

Human embryos from overweight and obese women display phenotypic and metabolic abnormalities

Christine Leary; Henry J. Leese; Roger G. Sturmey

STUDY QUESTION Is the developmental timing and metabolic regulation disrupted in embryos from overweight or obese women? SUMMARY ANSWER Oocytes from overweight or obese women are smaller than those from women of healthy weight, yet post-fertilization they reach the morula stage faster and, as blastocysts, show reduced glucose consumption and elevated endogenous triglyceride levels. WHAT IS KNOWN ALREADY Female overweight and obesity is associated with infertility. Moreover, being overweight or obese around conception may have significant consequences for the unborn child, since there are widely acknowledged links between events occurring during early development and the incidence of a number of adult disorders. STUDY DESIGN, SIZE, DURATION We have performed a retrospective, observational analysis of oocyte size and the subsequent developmental kinetics of 218 oocytes from 29 consecutive women attending for ICSI treatment and have related time to reach key developmental stages to maternal bodyweight. In addition, we have measured non-invasively the metabolic activity of 150 IVF/ICSI embryos from a further 29 consecutive women who donated their surplus embryos to research, and have related the data retrospectively to their body mass index (BMI). PARTICIPANTS/MATERIALS, SETTING, METHODS In a clinical IVF setting, we compared oocyte morphology and developmental kinetics of supernumerary embryos collected from overweight and obese women, with a BMI in excess of 25 kg/m(2) to those from women of healthy weight. A Primovision Time-Lapse system was used to measure developmental kinetics and the non-invasive COnsumption/RElese of glucose, pyruvate, amino acids and lactate were measured on spent droplets of culture medium. Total triglyceride levels within individual embryos were also determined. MAIN RESULTS AND THE ROLE OF CHANCE Human oocytes from women presenting for fertility treatment with a BMI exceeding 25 kg/m(2) are smaller (R(2) = -0.45; P = 0.001) and therefore less likely to complete development post-fertilization (P < 0.001). Those embryos that do develop reach the morula stage faster than embryos from women of a BMI < 25 kg/m(2) (<0.001) and the resulting blastocysts contain fewer cells notably in the trophectoderm (P = 0.01). The resulting blastocysts also have reduced glucose consumption (R(2) = -0.61; P = 0.001), modified amino acid metabolism and increased levels of endogenous triglyceride (t = 4.11, P < 0.001). Our data further indicate that these differences are independent of male BMI. LIMITATIONS, REASONS FOR CAUTION Although statistical power has been achieved, this is a retrospective study and relatively small due to the scarcity of human embryos available for research. Consequently, subanalysis of overweight and obese was not possible based on the sample size. The analysis has been performed on supernumerary embryos, originating from a single IVF unit and not selected for use in treatment. Thus, it was not possible to speculate how representative the findings would be of the better quality embryos transferred or frozen for each patient. WIDER IMPLICATIONS OF THE FINDINGS The data indicate that a high BMI of women at conception is associated with distinct phenotypic changes in the embryo during the preimplantation period, highlighting the importance of prepregnancy body weight in optimizing the chances of fertility and safeguarding maternal and offspring health. These changes to the metabolic fingerprint of human embryos which are most likely a legacy of the ovarian conditions under which the oocyte has matured may reduce the chances of conception for overweight women and provide good evidence that the metabolic profile of the early embryo is set by sub-optimal conditions around the time of conception. The observed changes could indicate long-term implications for the health of the offspring of overweight and obese women. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Hull IVF Unit Charitable Trust and the Hull York Medical School. There are no conflict of interests.


PLOS ONE | 2014

Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle.

Niamh Forde; Constantine A. Simintiras; Roger G. Sturmey; Solomon Mamo; A. K. Kelly; Thomas E. Spencer; Fuller W. Bazer; P. Lonergan

In cattle, conceptus-maternal interactions are critical for the establishment and maintenance of pregnancy. A major component of this early interaction involves the transport of nutrients and secretion of key molecules by uterine epithelial cells to help support conceptus development during the peri-implantation period of pregnancy. Objectives were to: 1) analyze temporal changes in the amino acid (AA) content of uterine luminal fluid (ULF) during the bovine estrous cycle; 2) understand conceptus-induced alterations in AA content; 3) determine expression of AA transporters in the endometrium and conceptus; and 4) determine how these transporters are modulated by (Progesterone) P4. Concentrations of aspartic acid, arginine, glutamine, histidine, lysine, isoleucine, leucine, phenylalanine and tyrosine decreased on Day 16 of the estrous cycle but increased on Day 19 in pregnant heifers (P<0.05). Glutamic acid only increased in pregnant heifers on Day 19 (P<0.001). Asparagine concentrations were greater in ULF of cyclic compared to pregnant heifers on Day 7 (P<0.05) while valine concentrations were higher in pregnant heifers on Day 16 (P<0.05). Temporal changes in expression of the cationic AA transporters SLC7A1 SLC7A4 and SLC7A6 occurred in the endometrium during the estrous cycle/early pregnancy coordinate with changes in conceptus expression of SLC7A4, SLC7A2 and SLC7A1 (P<0.05). Only one acidic AA transporter (SLC1A5) increased in the endometrium while conceptus expression of SLC1A4 increased (P<0.05). The neutral AA transporters SLC38A2 and SLC7A5 increased in the endometrium in a temporal manner while conceptus expression of SLC38A7, SLC43A2, SLC38A11 and SLC7A8 also increased (P<0.05). P4 modified the expression of SLC1A1, -1A4, -1A5, -38A2, -38A4, -38A7, -43A2, -6A14, -7A1, -7A5 and -7A7 in the endometrium. Results demonstrate that temporal changes in AA in the ULF reflect changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle, some of which are modified by P4.


Biochemical Society Transactions | 2013

Parallels between embryo and cancer cell metabolism

Danielle G. Smith; Roger G. Sturmey

A key characteristic of cancer cells is the ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful. This metabolic switch, known as the Warburg effect, was first described in the 1920s, and has fascinated and puzzled researchers ever since. However, a dramatic increase in glycolysis in the presence of oxygen is one of the hallmarks of the development of the early mammalian embryo; a metabolic switch with many parallels to the Warburg effect of cancers. The present review provides a brief overview of this and other similarities between the metabolism in tumours and early embryos and proposes whether knowledge of early embryo metabolism can help us to understand metabolic regulation in cancer cells.

Collaboration


Dive into the Roger G. Sturmey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Brison

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

D. Rizos

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul McKeegan

Hull York Medical School

View shared research outputs
Top Co-Authors

Avatar

Niamh Lewis

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Guerif

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge