Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger J. Thompson is active.

Publication


Featured researches published by Roger J. Thompson.


Science | 2008

Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus

Roger J. Thompson; Michael F. Jackson; Michelle E. Olah; Ravi L. Rungta; Dustin J. Hines; Michael A. Beazely; John F. MacDonald; Brian A. MacVicar

Pannexin-1 (Px1) is expressed at postsynaptic sites in pyramidal neurons, suggesting that these hemichannels contribute to dendritic signals associated with synaptic function. We found that, in pyramidal neurons, N-methyl-d-aspartate receptor (NMDAR) activation induced a secondary prolonged current and dye flux that were blocked with a specific inhibitory peptide against Px1 hemichannels; knockdown of Px1 by RNA interference blocked the current in cultured neurons. Enhancing endogenous NMDAR activation in brain slices by removing external magnesium ions (Mg2+) triggered epileptiform activity, which had decreased spike amplitude and prolonged interburst interval during application of the Px1 hemichannel blocking peptide. We conclude that Px1 hemichannel opening is triggered by NMDAR stimulation and can contribute to epileptiform seizure activity.


Nature Medicine | 2012

Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis

Brian D. Gulbransen; Mohammad Bashashati; Simon A. Hirota; Xianyong Gui; Jane Roberts; Justin A. MacDonald; Daniel A. Muruve; Derek M. McKay; Paul L. Beck; Gary M. Mawe; Roger J. Thompson; Keith A. Sharkey

Inflammatory bowel diseases (IBDs) are chronic relapsing and remitting conditions associated with long-term gut dysfunction resulting from alterations to the enteric nervous system and a loss of enteric neurons. The mechanisms underlying inflammation-induced enteric neuron death are unknown. Here using in vivo models of experimental colitis we report that inflammation causes enteric neuron death by activating a neuronal signaling complex composed of P2X7 receptors (P2X7Rs), pannexin-1 (Panx1) channels, the Asc adaptor protein and caspases. Inhibition of P2X7R, Panx1, Asc or caspase activity prevented inflammation-induced neuron cell death. Preservation of enteric neurons by inhibiting Panx1 in vivo prevented the onset of inflammation-induced colonic motor dysfunction. Panx1 expression was reduced in Crohns disease but not ulcerative colitis. We conclude that activation of neuronal Panx1 underlies neuron death and the subsequent development of abnormal gut motility in IBD. Targeting Panx1 represents a new neuroprotective strategy to ameliorate the progression of IBD-associated dysmotility.


Channels | 2011

Pannexin channels are not gap junction hemichannels

Gina E. Sosinsky; Daniela Boassa; Rolf Dermietzel; Heather S. Duffy; Dale W. Laird; Brian A. MacVicar; Christian C. Naus; Silvia Penuela; Eliana Scemes; David C. Spray; Roger J. Thompson; Hong Bo Zhao; Gerhard Dahl

Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins, and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term “hemichannels” to describe pannexin oligomers while others use the term “channels” instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus, have an assembly and functional state as gap junctional intercellular channels. Here, we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channels in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term “hemichannel” be discontinued within the pannexin literature.


Trends in Neurosciences | 2010

Non-junction functions of pannexin-1 channels.

Brian A. MacVicar; Roger J. Thompson

Pannexins are large-pore ion channels with broad expression in the central nervous system (CNS). The channels function by releasing large signaling molecules, such ATP and arachidonic acid derivatives, from neurons and possibly astrocytes. They might also contribute to novel forms of non-synaptic communication in the CNS, thereby affecting synaptic function, astrocytic Ca(2+) wave propagation and possibly regulation of vascular tone in the brain. Panx1 activation in various in vitro pathological conditions implicates these channels in ischemic, excitotoxic and ATP-dependent cell death, whereas Panx coupling with purinergic receptors triggers the inflammasome. Novel functions for the pannexin channels are likely to be discovered as current understanding of how they are regulated in physiological and pathological situations improves.


Cancer Research | 2007

Tumor-Suppressive Effects of Pannexin 1 in C6 Glioma Cells

Charles P. Lai; John F. Bechberger; Roger J. Thompson; Brian A. MacVicar; Roberto Bruzzone; Christian C. Naus

Mammalian gap junction proteins, connexins, have long been implicated in tumor suppression. Recently, a novel family of proteins named pannexins has been identified as the mammalian counterpart of the invertebrate gap junction proteins, innexins. To date, pannexin 1 (Panx1) and pannexin 2 (Panx2) mRNAs are reported to be expressed in the brain. Most neoplastic cells, including rat C6 gliomas, exhibit reduced connexin expression, aberrant gap junctional intercellular communication (GJIC), and an increased proliferation rate. When gap junctions are up-regulated by transfecting C6 cells with connexin43, GJIC is restored and the proliferation is reduced. In this study, we examined the tumor-suppressive effects of Panx1 expression in C6 cells. Reverse transcription-PCR analysis revealed that C6 cells do not express any of the pannexin transcripts, whereas its nontumorigenic counterpart, rat primary astrocytes, exhibited mRNAs for all three pannexins. On generation of stable C6 transfectants with tagged Panx1 [myc or enhanced green fluorescent protein (EGFP)], a localization of Panx1 expression to the Golgi apparatus and plasma membrane was observed. In addition, Panx1 transfectants exhibited a flattened morphology, which differs greatly from the spindle-shaped control cells (EGFP only). Moreover, Panx1 expression increased gap junctional coupling as shown by the passage of sulforhodamine 101. Finally, we showed that stable expression of Panx1 in C6 cells significantly reduced cell proliferation in monolayers, cell motility, anchorage-independent growth, and in vivo tumor growth in athymic nude mice. Altogether, we conclude that the loss of pannexin expression may participate in the development of C6 gliomas, whereas restoration of Panx1 plays a tumor-suppressive role.


The Journal of Neuroscience | 2012

Anoxia-Induced NMDA Receptor Activation Opens Pannexin Channels via Src Family Kinases

Nicholas L. Weilinger; Peter L. Tang; Roger J. Thompson

Anoxic depolarization of pyramidal neurons results from a large inward current that is activated, in part, by excessive glutamate release during exposure to anoxia/ischemia. Pannexin-1 (Panx1) channels can be activated both by ischemia and NMDA receptors (NMDARs), but the mechanisms of Panx1 activation are unknown. We used whole-cell recordings to show that pharmacological inhibition or conditional genetic deletion of Panx1 strongly attenuates the anoxic depolarization of CA1 pyramidal neurons in acute brain slices from rats and mice. Anoxia or exogenous NMDA activated Src family kinases (SFKs), as measured by increased phosphorylation of SFKs at Y416. The SFK inhibitor PP2 prevented Src activation and Panx1 opening during anoxia. A newly developed interfering peptide that targets the SFK consensus-like sequence of Panx1 (Y308) attenuated the anoxic depolarization (AD) without affecting SFK activation. Importantly, the NMDAR antagonists, d-APV and R-CPP, attenuated AD currents carried by Panx1, and the combined application of d-APV and 10panx (a Panx1 blocker) inhibited AD currents to the same extent as either blocker alone. We conclude that activation of NMDARs during anoxia/ischemia recruits SFKs to open Panx1, leading to sustained neuronal depolarizations.


Channels | 2008

Connexin and pannexin hemichannels of neurons and astrocytes.

Roger J. Thompson; Brian A. MacVicar

Hemichannels are large pore ion channels that in the traditional view are formed when half a gap connexin junction opens to the extracellular space. It is now evident that other ion channel families, including the newly discovered pannexin family can form channels with all the nascent properties of hemichannels. This suggests that hemichannels should now be defined to include members of non-connexin families. Several connexin, and two pannexins are expressed in neurons and astrocytes where they may function in release of ATP and glutamate. Additionally, pannexin-1 appears to play a role in neuronal death. Hemichannels form a novel and unique class of ion channels that likely have diverse physiological and pathophysiological roles in the nervous system.


Nature Neuroscience | 2016

Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity

Nicholas L Weilinger; Alexander W. Lohman; Brooke D Rakai; Evelyn M M Ma; Jennifer Bialecki; Valentyna Maslieieva; Travis Rilea; Mischa V. Bandet; Nathan T Ikuta; Lucas Scott; Michael A. Colicos; G. Campbell Teskey; Ian R. Winship; Roger J. Thompson

Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca2+-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg2+ or a Ca2+-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.


Acta Pharmacologica Sinica | 2013

Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

Nicholas L Weilinger; Valentyna Maslieieva; Jennifer Bialecki; Sarup S Sridharan; Peter L. Tang; Roger J. Thompson

Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.


Science Signaling | 2015

A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells

Marie Billaud; Yu-Hsin Chiu; Alexander W. Lohman; Thibaud Parpaite; Joshua T. Butcher; Stephanie Mutchler; Leon J. DeLalio; Mykhaylo V. Artamonov; Joanna K. Sandilos; Angela K. Best; Avril V. Somlyo; Roger J. Thompson; Thu H. Le; Kodi S. Ravichandran; Douglas A. Bayliss; Brant E. Isakson

The ATP-releasing channel Panx1 is specifically involved in blood pressure regulation by adrenergic signaling. Regulating blood pressure with ATP Blood pressure is dynamically regulated to enable rapid responses to changes in position and physical or emotional stress, such as exercise or anger and fear. Many signals that activate G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) control vascular tone, including norepinephrine (also known as noradrenaline) released by the sympathetic nervous system, which increases blood pressure. Billaud et al. report that the α1 adrenoreceptor (α1AR)—but not the endothelin-1 or serotonin receptor, which are also Gαq-coupled GPCRs and stimulate vasoconstriction—is specifically coupled to activation of the ATP (adenosine 5′-triphosphate)–releasing channel pannexin1 (Panx1). Mice lacking Panx1 in smooth muscle cells were hypotensive, specifically during their active period of the day. Isolated arteries from these mice did not release ATP and contracted less in response to adrenoreceptor stimulation. Thus, ATP release through Panx1 channels specifically contributes to blood pressure regulation by the sympathetic nervous system. Both purinergic signaling through nucleotides such as ATP (adenosine 5′-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.

Collaboration


Dive into the Roger J. Thompson's collaboration.

Top Co-Authors

Avatar

Brian A. MacVicar

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas L Weilinger

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian C. Naus

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge