Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger K. Prichard is active.

Publication


Featured researches published by Roger K. Prichard.


The Lancet | 2007

Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study.

Mike Y. Osei-Atweneboana; Jeff rey K L Eng; Daniel A. Boakye; John O. Gyapong; Roger K. Prichard

BACKGROUND Ivermectin has been used for onchocerciasis control since 1987. Because of the long-term use of this drug and the development of resistance in other nematodes, we have assessed Onchocerca volvulus burdens, effectiveness of ivermectin as a microfilaricide, and its effect on adult female worm reproduction. METHODS For the first phase of the study, 2501 individuals in Ghana, from 19 endemic communities who had received six to 18 annual rounds of ivermectin and one ivermectin naive community, were assessed for microfilarial loads 7 days before the 2004 yearly ivermectin treatment, by means of skin snips, and 30 days after treatment to assess the ivermectin microfilaricidal action. For the second phase, skin snips were taken from 342 individuals from ten communities, who were microfilaria positive at pretreatment assessment, on days 90 and 180 after treatment, to identify the effects of ivermectin on female worm fertility, assessed by microfilaria repopulation. FINDINGS 487 (19%) of the 2501 participants were microfilaria positive. The microfilaria prevalence and community microfilarial load in treated communities ranged from 2.2% to 51.8%, and 0.06 microfilariae per snip to 2.85 microfilariae per snip, respectively. Despite treatment, the prevalence rate doubled between 2000 and 2005 in two communities. Microfilaria assessment 30 days after ivermectin treatment showed 100% clearance of microfilaria in more than 99% of people. At day 90 after treatment, four of ten communities had significant microfilaria repopulation, from 7.1% to 21.1% of pretreatment counts, rising to 53.9% by day 180. INTERPRETATION Ivermectin remains a potent microfilaricide. However, our results suggest that resistant adult parasite populations, which are not responding as expected to ivermectin, are emerging. A high rate of repopulation of skin with microfilariae will allow parasite transmission, possibly with ivermectin-resistant O volvulus, which could eventually lead to recrudescence of the disease.


Molecular and Biochemical Parasitology | 1998

IVERMECTIN RESISTANCE IN NEMATODES MAY BE CAUSED BY ALTERATION OF P-GLYCOPROTEIN HOMOLOG

Ming Xu; Marcelo Molento; William J. Blackhall; Paula Ribeiro; Robin N. Beech; Roger K. Prichard

Resistance to ivermectin and related drugs is an increasing problem for parasite control. The mechanism of ivermectin resistance in nematode parasites is currently unknown. Some P-glycoproteins and multidrug resistance proteins have been found to act as membrane transporters which pump drugs from the cell. A disruption of the mdrla gene, which encodes a P-glycoprotein in mice, results in hypersensitivity to ivermectin. Genes encoding members of the P-glycoprotein family are known to exist in nematodes but the involvement of P-glycoprotein in nematode ivermectin-resistance has not been described. Our data suggest that a P-glycoprotein may play a role in ivermectin resistance in the sheep nematode parasite Haemonchus contortus. A full length P-glycoprotein cDNA from H. contortus has been cloned and sequenced. Analysis of the sequence showed 61-65% homology to other P-glycoprotein/multidrug resistant protein sequences, such as mice, human and Caenorhabditis elegans. Expression of P-glycoprotein mRNA was higher in ivermectin-selected than unselected strains of H. contortus. An alteration in the restriction pattern was also found for the genomic locus of P-glycoprotein derived from ivermectin-selected strains of H. contortus compared with unselected strains. P-glycoprotein gene structure and/or its transcription are altered in ivermectin-selected H. contortus. The multidrug resistance reversing agent, verapamil, increased the efficacy of ivermectin and moxidectin against a moxidectin-selected strain of this nematode in jirds (Meriones unguiculatus). These data indicate that a P-glycoprotein may be involved in resistance to ivermectin and other macrocyclic lactones in H. contortus.


Trends in Parasitology | 2001

Genetic variability following selection of Haemonchus contortus with anthelmintics

Roger K. Prichard

Genetic diversity in nematodes leads to variation in response to anthelmintics. Haemonchus contortus shows enormous genetic diversity, allowing anthelmintic resistance alleles to be rapidly selected. Anthelmintic resistance is now a widespread problem, especially in H. contortus. Here, I compare the genes involved in anthelmintic resistance in H. contortus with those that confer susceptibility or resistance on the free living nematode Caenorhabditis elegans. I also discuss the latest knowledge of genes associated with resistance to benzimidazoles, levamisole and the macrocyclic lactones and the need for DNA markers for anthelmintic resistance.


PLOS Neglected Tropical Diseases | 2012

A research agenda for helminth diseases of humans: The problem of helminthiases

Sara Lustigman; Roger K. Prichard; Andrea Gazzinelli; Warwick N. Grant; Boakye A. Boatin; James S. McCarthy; María-Gloria Basáñez

A disproportionate burden of helminthiases in human populations occurs in marginalised, low-income, and resource-constrained regions of the world, with over 1 billion people in developing areas of sub-Saharan Africa, Asia, and the Americas infected with one or more helminth species. The morbidity caused by such infections imposes a substantial burden of disease, contributing to a vicious circle of infection, poverty, decreased productivity, and inadequate socioeconomic development. Furthermore, helminth infection accentuates the morbidity of malaria and HIV/AIDS, and impairs vaccine efficacy. Polyparasitism is the norm in these populations, and infections tend to be persistent. Hence, there is a great need to reduce morbidity caused by helminth infections. However, major deficiencies exist in diagnostics and interventions, including vector control, drugs, and vaccines. Overcoming these deficiencies is hampered by major gaps in knowledge of helminth biology and transmission dynamics, platforms from which to help develop such tools. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, we provide an overview of the forces driving the persistence of helminthiases as a public health problem despite the many control initiatives that have been put in place; identify the main obstacles that impede progress towards their control and elimination; and discuss recent advances, opportunities, and challenges for the understanding of the biology, epidemiology, and control of these infections. The helminth infections that will be discussed include: onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, food-borne trematodiases, and taeniasis/cysticercosis.


International Journal for Parasitology | 2010

Unresolved issues in anthelmintic pharmacology for helminthiases of humans.

Timothy G. Geary; Katherine Woo; James S. McCarthy; Charles D. Mackenzie; John Horton; Roger K. Prichard; Nilanthi de Silva; Piero Olliaro; Janis K. Lazdins-Helds; Dirk Engels; Donald A. P. Bundy

Helminth infections are an important constraint on the health and development of poor children and adults. Anthelmintic treatment programmes provide a safe and effective response, and increasing numbers of people are benefitting from these public health initiatives. Despite decades of clinical experience with anthelmintics for the treatment of human infections, relatively little is known about their clinical pharmacology. All of the drugs were developed initially in response to the considerable market for veterinary anthelmintics in high- and middle-income countries. In contrast, the greatest burden caused by these infections in humans is in resource-poor settings and as a result there has been insufficient commercial incentive to support studies on how these drugs work in humans, and how they should best be used in control programmes. The advent of mass drug administration programmes for the control of schistosomiasis, lymphatic filariasis, onchocerciasis and soil-transmitted helminthiases in humans increases the urgency to better understand and better monitor drug resistance, and to broaden the currently very narrow range of available anthelmintics. This provides fresh impetus for developing a comprehensive research platform designed to improve our understanding of these important drugs, in order to bring the scientific knowledge base supporting their use to a standard equivalent to that of drugs commonly used in developed countries. Furthermore, a better understanding of their clinical pharmacology will enable improved therapy and could contribute to the discovery of new products.


PLOS Neglected Tropical Diseases | 2011

Phenotypic Evidence of Emerging Ivermectin Resistance in Onchocerca volvulus

Mike Y. Osei-Atweneboana; K. Awadzi; Simon K. Attah; Daniel A. Boakye; John O. Gyapong; Roger K. Prichard

Background Ivermectin (IVM) has been used in Ghana for over two decades for onchocerciasis control. In recent years there have been reports of persistent microfilaridermias despite multiple treatments. This has necessitated a reexamination of its microfilaricidal and suppressive effects on reproduction in the adult female Onchocerca volvulus. In an initial study, we demonstrated the continued potent microfilaricidal effect of IVM. However, we also found communities in which the skin microfilarial repopulation rates at days 90 and 180 were much higher than expected. In this follow up study we have investigated the reproductive response of female worms to multiple treatments with IVM. Methods and Findings The parasitological responses to IVM in two hundred and sixty-eight microfilaridermic subjects from nine communities that had received 10 to 19 annual doses of IVM treatment and one pre-study IVM-naïve community were followed. Skin snips were taken 364 days after the initial IVM treatment during the study to determine the microfilaria (mf) recovery rate. Nodules were excised and skin snips taken 90 days following a second study IVM treatment. Nodule and worm density and the reproductive status of female worms were determined. On the basis of skin mf repopulation and skin mf recovery rates we defined three categories of response—good, intermediate and poor—and also determined that approximately 25% of subjects in the study carried adult female worms that responded suboptimally to IVM. Stratification of the female worms by morphological age and microfilarial content showed that almost 90% of the worms were older or middle aged and that most of the mf were produced by the middle aged and older worms previously exposed to multiple treatments with little contribution from young worms derived from ongoing transmission. Conclusions The results confirm that in some communities adult female worms were non-responsive or resistant to the anti-fecundity effects of multiple treatments with IVM. A scheme of the varied responses of the adult female worm to multiple treatments is proposed.


Biochemical Pharmacology | 1997

Reversal of P-glycoprotein-associated multidrug resistance by ivermectin.

Jean-François Pouliot; Françoise L'Heureux; Zhi Liu; Roger K. Prichard; Elias Georges

P-Glycoprotein (P-gp) causes a multidrug resistance (MDR) phenotype in tumour cells. In some cancers, the expression of P-gp has been correlated with low clinical response to chemotherapy and survival of patients. Previous studies have shown that certain lipophilic drugs bind to P-gp and reverse the MDR phenotype of tumour cells. In this study, we extend that list of compounds and present evidence for the capacity of a potent and clinically safe anthelmintic, ivermectin (IVM), as an MDR-reversing drug. Using a highly drug-resistant human cell line, we compared IVM with other MDR-reversing agents and showed that IVM is 4- and 9-fold more potent than cyclosporin A and verapamil, respectively. The capacity of IVM to inhibit iodoaryl-azidoprazosin photolabeling of P-gp is consistent with direct binding to P-gp. Studies showed that [3H]IVM binding to membranes from resistant cells is specific and saturable with KD and Bmax values of 10.6 nM and 19.8 pmol/mg, respectively. However, while cyclosporin A or vinblastine inhibited [3H]IVM binding to membranes from drug-resistant but not drug-sensitive cells, neither verapamil nor colchicine had any effect. Furthermore, both IVM and cyclosporin A and, to a lesser extent, verapamil also inhibited [3H]vinblastine binding to membranes from drug-resistant cells. Drug transport studies showed that [3H]IVM is a substrate for the P-gp drug efflux pump. However, it was transported less efficiently by P-gp than [3H]vinblastine. Moreover, only cyclosporin A was effective in potentiating the accumulation of [3H]IVM in drug-resistant cells. Taken together, the high efficiency of MDR reversal by IVM combined with its low toxicity are consistent with the properties of an ideal MDR-reversing agent.


Molecular and Biochemical Parasitology | 1998

Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus

William J. Blackhall; Hao Yuan Liu; Ming Xu; Roger K. Prichard; Robin N. Beech

Resistance to anthelmintics that are used to control parasite populations in domestic animals has become a serious problem worldwide. The development of resistance is an evolutionary process that leads to genetic changes in parasite populations in response to drug exposure. The anthelmintic ivermectin is known to bind to the human membrane transport protein, P-glycoprotein, and P-glycoprotein-deficient mice treated with ivermectin have shown signs of neurotoxicity. P-glycoprotein is believed to be involved in the multidrug resistance phenotype seen in some human cancers and for drug resistance in some protists. We have examined the genetic variation of a P-glycoprotein homologue from the nematode Haemonchus contortus to see if an association exists between specific alleles of this gene and survival to exposure to ivermectin or moxidectin. Two parasite strains passaged without drug treatment and three strains, subjected to anthelmintic selection and derived from the unselected strains, were examined. Allelic variation in the unselected strains showed this locus to be highly polymorphic. chi 2 analyses of allele frequencies showed significant differences between the unselected and the drug-selected derived strains. In all three drug-selected strains, an apparent selection for the same allele was observed. These findings suggest that P-glycoprotein may be involved in resistance to both ivermectin and moxidectin in H. contortus.


International Journal for Parasitology | 1990

Anthelmintic resistance in nematodes: Extent, recent understanding and future directions for control and research

Roger K. Prichard

Resistance has now been reported to all of the broad spectrum anthelmintic types currently available, namely to the benzimidazoles, levamisole/morantel and to ivermectin. The problem causes most concern for parasite control in sheep, but anthelmintic resistance has also been reported in nematodes of horses, goats, pigs and more recently cattle. Our understanding of the factors which select rapidly for resistance has increased and programmes of worm control which minimize selection for anthelmintic resistance are being developed and tested. One of the greatest problems encountered in attempting to reduce the selection for overt drug resistance is the need for more sensitive tests for developing resistance. In the long term, new approaches to chemotherapy and to overcoming anthelmintic resistance problems will arise from improving our understanding of the modes of action of, and mechanisms of resistance to, anthelmintics at the level of the receptor proteins and their genes.


PLOS Neglected Tropical Diseases | 2012

A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination

Roger K. Prichard; María-Gloria Basáñez; Boakye A. Boatin; James S. McCarthy; Hector H. Garcia; Guo-Jing Yang; Banchob Sripa; Sara Lustigman

Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed.

Collaboration


Dive into the Roger K. Prichard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Boussinesq

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Y. Osei-Atweneboana

Council for Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge