Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger K. Sunahara is active.

Publication


Featured researches published by Roger K. Sunahara.


Nature | 2011

Crystal structure of the β2 adrenergic receptor-Gs protein complex.

Søren Rasmussen; Brian T. DeVree; Yaozhong Zou; Andrew C. Kruse; Ka Young Chung; Tong Sun Kobilka; Foon Sun Thian; Pil Seok Chae; Els Pardon; Diane Calinski; Jesper Mosolff Mathiesen; Syed T. A. Shah; Joseph A. Lyons; Martin Caffrey; Samuel H. Gellman; Jan Steyaert; Georgios Skiniotis; William I. Weis; Roger K. Sunahara; Brian K. Kobilka

G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor (β2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.


Nature | 2011

Structure of a nanobody-stabilized active state of the β2 adrenoceptor

Søren Rasmussen; Hee Jung Choi; Juan José Fung; Els Pardon; Paola Casarosa; Pil Seok Chae; Brian T. DeVree; Daniel M. Rosenbaum; Foon Sun Thian; Tong Sun Kobilka; Andreas Schnapp; Ingo Konetzki; Roger K. Sunahara; Samuel H. Gellman; Alexander Pautsch; Jan Steyaert; William I. Weis; Brian K. Kobilka

G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β2 adrenergic receptor (β2AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β2AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.


Nature | 2012

Crystal structure of the µ-opioid receptor bound to a morphinan antagonist

Aashish Manglik; Andrew C. Kruse; Tong Sun Kobilka; Foon Sun Thian; Jesper Mosolff Mathiesen; Roger K. Sunahara; Leonardo Pardo; William I. Weis; Brian K. Kobilka; Sébastien Granier

Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.


Nature | 2011

Structure and function of an irreversible agonist-β 2 adrenoceptor complex

Daniel M. Rosenbaum; Cheng Zhang; Joseph A. Lyons; Ralph Holl; David Aragão; Daniel H. Arlow; Sã̧ren G F Rasmussen; Hee Jung Choi; Brian T. DeVree; Roger K. Sunahara; Pil Seok Chae; Samuel H. Gellman; Ron O. Dror; David E. Shaw; William I. Weis; Martin Caffrey; Peter Gmeiner; Brian K. Kobilka

G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β2 adrenergic receptor (β2AR) as a guide, we designed a β2AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β2AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β2AR–T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

Matthew R. Whorton; Michael P. Bokoch; Søren Rasmussen; Bo Huang; Richard N. Zare; Brian K. Kobilka; Roger K. Sunahara

G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the β2-adrenergic receptor (β2AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single β2AR is incorporated per rHDL particle. The monomeric β2AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.


Nature | 2013

Conformational biosensors reveal GPCR signalling from endosomes

Roshanak Irannejad; Jin C. Tomshine; Jon R. Tomshine; Michael W. Chevalier; Jacob P. Mahoney; Jan Steyaert; Søren Rasmussen; Roger K. Sunahara; Hana El-Samad; Bo Huang; Mark von Zastrow

A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.


Nature | 2011

Conformational changes in the G protein Gs induced by the β2 adrenergic receptor.

Ka Young Chung; Søren Rasmussen; Tong Liu; Sheng Li; Brian T. DeVree; Pil Seok Chae; Diane Calinski; Brian K. Kobilka; Virgil L. Woods; Roger K. Sunahara

G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen–deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human β2 adrenergic receptor (β2AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen–deuterium exchange than would be predicted from the crystal structure of the β2AR–Gs complex. Together with X-ray crystallographic and electron microscopic data of the β2AR–Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the ‘P-loop’ that binds the β-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.


Journal of Biological Chemistry | 2008

Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer

Matthew R. Whorton; Beata Jastrzebska; Paul S.-H. Park; Dimitrios Fotiadis; Andreas Engel; Krzysztof Palczewski; Roger K. Sunahara

G protein-coupled receptors (GPCRs) are seven transmembrane domain proteins that transduce extracellular signals across the plasma membrane and couple to the heterotrimeric family of G proteins. Like most intrinsic membrane proteins, GPCRs are capable of oligomerization, the function of which has only been established for a few different receptor systems. One challenge in understanding the function of oligomers relates to the inability to separate monomeric and oligomeric receptor complexes in membrane environments. Here we report the reconstitution of bovine rhodopsin, a GPCR expressed in the retina, into an apolipoprotein A-I phospholipid particle, derived from high density lipoprotein (HDL). We demonstrate that rhodopsin, when incorporated into these 10 nm reconstituted HDL (rHDL) particles, is monomeric and functional. Rhodopsin·rHDL maintains the appropriate spectral properties with respect to photoactivation and formation of the active form, metarhodopsin II. Additionally, the kinetics of metarhodopsin II decay is similar between rhodopsin in native membranes and rhodopsin in rHDL particles. Photoactivation of monomeric rhodopsin·rHDL also results in the rapid activation of transducin, at a rate that is comparable with that found in native rod outer segments and 20-fold faster than rhodopsin in detergent micelles. These data suggest that monomeric rhodopsin is the minimal functional unit in G protein activation and that oligomerization is not absolutely required for this process.


Journal of Biological Chemistry | 1998

Exchange of Substrate and Inhibitor Specificities between Adenylyl and Guanylyl Cyclases

Roger K. Sunahara; Annie Beuve; John J. G. Tesmer; Stephen R. Sprang; David L. Garbers; Alfred G. Gilman

The active sites of guanylyl and adenylyl cyclases are closely related. The crystal structure of adenylyl cyclase and modeling studies suggest that specificity for ATP or GTP is dictated in part by a few amino acid residues, invariant in each family, that interact with the purine ring of the substrate. By exchanging these residues between guanylyl cyclase and adenylyl cyclase, we can completely change the nucleotide specificity of guanylyl cyclase and convert adenylyl cyclase into a nonselective purine nucleotide cyclase. The activities of these mutant enzymes remain fully responsive to their respective stimulators, sodium nitroprusside and Gsα. The specificity of nucleotide inhibitors of guanylyl and adenylyl cyclases that do not act competitively with respect to substrate are similarly altered, indicative of their action at the active sites of these enzymes.


Synapse | 2000

Dopamine D5 receptor immunolocalization in rat and monkey brain

Brian J. Ciliax; Norm Nash; Craig J. Heilman; Roger K. Sunahara; Anne Hartney; Mario Tiberi; David B. Rye; Marc G. Caron; Hyman B. Niznik; Allan I. Levey

Dopamine D5 receptor localization has been difficult because even the most specific ligands cannot distinguish between molecular subtypes of the D1‐like receptor subfamily. Antifusion protein rabbit polyclonal antibodies directed against the C‐terminus of human D5 receptor were therefore developed for immunolocalization of the D5 receptor protein in brain. The antibodies were characterized by immunoblot analysis and immunoprecipitation and used for light microscopic immunocytochemistry in rat and monkey brain. Affinity purified D5 antibodies were specific for D5 fusion protein as well as cloned and native D5 receptor on Western blots, and D5 antisera specifically immunoprecipitated solubilized, cloned D5 receptor. Regional distribution of D5 receptor immunoreactivity was consistent across species and correlated well with D5 mRNA distribution previously reported in monkey brain. Immunoreactivity was widespread and tended to label perikarya and proximal dendrites of neurons in cerebral cortex, basal ganglia, basal forebrain, hippocampus, diencephalon, brainstem, and cerebellum. Neuropil was immunoreactive in olfactory bulb, islands of Calleja, cerebral cortex, superior colliculus, and molecular layer of cerebellum. The distribution of D5 in brain was clearly different from that of other dopamine receptor subtypes, including D1, the other member of the D1‐like receptor subfamily. This unique distribution corroborates the idea that the D5 receptor subtype has a distinct role in dopamine neurotransmission. Synapse 2:125–145, 2000.

Collaboration


Dive into the Roger K. Sunahara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge