Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Karlsson is active.

Publication


Featured researches published by Roger Karlsson.


Nature | 2001

Molecular engineering: Networks of nanotubes and containers

Anders Karlsson; Roger Karlsson; Mattias Karlsson; Ann-Sofie Cans; Anette Strömberg; Frida Ryttsén; Owe Orwar

We have constructed complex two-dimensional microscopic networks of phospholipid bilayer nanotubes and containers in which we are able to control the connectivity, container size, nanotube length, and angle between the nanotube extensions. Containers within these networks can be chemically differentiated and materials successfully routed between two containers connected by a common nanotube. These networks will enable model systems to be devised for studying confined biochemical reactions, intracellular transport phenomena and chemical computations.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Artificial cells: unique insights into exocytosis using liposomes and lipid nanotubes.

Ann-Sofie Cans; Nathan J. Wittenberg; Roger Karlsson; Leslie A. Sombers; Mattias Karlsson; Owe Orwar; Andrew G. Ewing

Exocytosis is the fundamental process underlying neuronal communication. This process involves fusion of a small neurotransmitter-containing vesicle with the plasma membrane of a cell to release minute amounts of transmitter molecules. Exocytosis is thought to go through an intermediate step involving formation of a small lipid nanotube or fusion pore, followed by expansion of the pore to the final stage of exocytosis. The process of exocytosis has been studied by various methods; however, when living cells are used it is difficult to discriminate between the molecular effects of membrane proteins relative to the mechanics of lipid–membrane-driven processes and to manipulate system parameters (e.g., membrane composition, pH, ion concentration, temperature, etc.). We describe the use of liposome–lipid nanotube networks to create an artificial cell model that undergoes the later stages of exocytosis. This model shows that membrane mechanics, without protein intervention, can drive expansion of the fusion pore to the final stage of exocytosis and can affect the rate of transmitter release through the fusion pore.


PLOS ONE | 2010

HAMLET interacts with lipid membranes and perturbs their structure and integrity.

Ann-Kristin Mossberg; Maja Puchades; Øyvind Halskau; Anne Baumann; Ingela Lanekoff; Yinxia Chao; Aurora Martinez; Catharina Svanborg; Roger Karlsson

Background Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. Methodology/Principal Findings We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLAall-Ala). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. Conclusions/Significance The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.


Molecular Cancer | 2013

Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

Steven Rust; Sandrine Guillard; Kris Sachsenmeier; Carl Hay; Max Davidson; Anders Karlsson; Roger Karlsson; Erin Brand; David Lowne; John Elvin; Matt Flynn; Gene Kurosawa; Robert E. Hollingsworth; Lutz Jermutus; Ralph Minter

BackgroundThe continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options.MethodsThe MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model.ResultsAll of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated using the anti-CD73 antibody, which bound other ‘triple negative’ breast cancer cell lines and produced significant tumour growth inhibitory activity in a MDA-MB-231 xenograft model.ConclusionsThis study has demonstrated that multiple methods are required to successfully analyse the membranome of a desired cell type. It has also successfully demonstrated that phenotypic antibody screening provides a mechanism for rapidly discovering and evaluating antibody tractable targets, which can significantly accelerate the therapeutic discovery process.


Journal of Proteome Research | 2012

Strain-Level Typing and Identification of Bacteria Using Mass Spectrometry-Based Proteomics

Roger Karlsson; Max Davidson; Liselott Svensson-Stadler; Anders Karlsson; Kenneth Olesen; Elisabet Carlsohn; Edward R. B. Moore

Because of the alarming expansion in the diversity and occurrence of bacteria displaying virulence and resistance to antimicrobial agents, it is increasingly important to be able to detect these microorganisms and to differentiate and identify closely related species, as well as different strains of a given species. In this study, a mass spectrometry proteomics approach is applied, exploiting lipid-based protein immobilization (LPI), wherein intact bacterial cells are bound, via membrane-gold interactions, within a FlowCell. The bound cells are subjected to enzymatic digestion for the generation of peptides, which are subsequently identified, using LC-MS. Following database matching, strain-specific peptides are used for subspecies-level discrimination. The method is shown to enable a reliable typing and identification of closely related strains of the same bacterial species, herein illustrated for Helicobacter pylori .


BMC Microbiology | 2010

Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

Darren Chooneea; Roger Karlsson; Vesela Encheva; Cath Arnold; Hazel Appleton; Haroun N. Shah

BackgroundSalmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS) and identified from mass spectral database searches.ResultsIn this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX.ConclusionUsing a multi-step digest approach the LPI™ technique enables the incorporation of a multi-step protease work flow ensuring enough sequence coverage of membrane proteins subsequently leading to the identification of more membrane proteins with higher confidence. Compared to current sub-cellular fractionation procedures and previous published work, the LPI™ technique currently provides the widest coverage of outer membrane proteins identified as demonstrated here for Salmonella Typhimurium.


Fems Microbiology Letters | 2009

Identification of key proteins involved in the anammox reaction

Roger Karlsson; Anders Karlsson; Ola Bäckman; Bengt R. Johansson; Stefan Hulth

Bacteria performing anaerobic ammonium oxidation (anammox) are key players in the global nitrogen cycle due to their inherent ability to convert biologically available nitrogen to N(2). Anammox is increasingly being exploited during wastewater treatment worldwide, and about 50% of the total N(2) production in marine environments is estimated to proceed by the anammox pathway. To fully understand the microbial functionality and mechanisms that control environmental feedbacks of the anammox reaction, key proteins involved in the reaction must be identified. In this study we have utilized an analytical protocol that facilitates detection of proteins associated with the anammoxosome, an intracellular membrane compartment within the anammox bacterium. The protocol enabled us to identify several key proteins of the anammox reaction including a hydrazine hydrolase producing hydrazine, a hydrazine-oxidizing enzyme converting hydrazine to N(2) and a membrane-bound ATP synthase generating ATP from the gradients of protons formed in the anammox reaction. We also performed immunogold labelling electron microscopy to determine the subcellular location of the hydrazine hydrolase. The results from our study support the hypothesis that proteins associated with the anammoxosome host the complete suite of reactions during anammox.


Contact Dermatitis | 2013

Cinnamyl alcohol oxidizes rapidly upon air exposure.

Ida B. Niklasson; Tamara Delaine; M. Nurul Islam; Roger Karlsson; Kristina Luthman; Ann-Therese Karlberg

Background. Cinnamyl alcohol and cinnamal are frequent fragrance contact allergens. Both are included in the European baseline fragrance mix I, which is used for screening of contact allergy in dermatitis patients.


Analytical Chemistry | 2010

Steady-state electrochemical determination of lipidic nanotube diameter utilizing an artificial cell model.

Kelly L. Adams; Johan Engelbrektsson; Marina V. Voinova; Bo Zhang; Daniel J. Eves; Roger Karlsson; Michael L. Heien; Ann-Sofie Cans; Andrew G. Ewing

By exploiting the capabilities of steady-state electrochemical measurements, we have measured the inner diameter of a lipid nanotube using Ficks first law of diffusion in conjunction with an imposed linear concentration gradient of electroactive molecules over the length of the nanotube. Ficks law has been used in this way to provide a direct relationship between the nanotube diameter and the measurable experimental parameters Deltai (change in current) and nanotube length. Catechol was used to determine the Deltai attributed to its flux out of the nanotube. Comparing the nanotube diameter as a function of nanotube length revealed that membrane elastic energy was playing an important role in determining the size of the nanotube and was different when the tube was connected to either end of two vesicles or to a vesicle on one end and a pipet tip on the other. We assume that repulsive interaction between neck regions can be used to explain the trends observed. This theoretical approach based on elastic energy considerations provides a qualitative description consistent with experimental data.


Analytical and Bioanalytical Chemistry | 2010

Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS

Ingela Lanekoff; Roger Karlsson

Since the discovery of the anaerobic ammonium oxidizing (anammox) bacteria, many attempts have been made in order to identify these environmentally important bacteria in natural environments. Anammox bacteria contain a unique class of lipids, called ladderane lipids and here we present a novel method to detect viable anammox bacteria in sediments and waste water treatment plants based on the use of a ladderane lipid biomarker. Intact ladderane phosphatidylcholine (PC) lipids are analyzed using reversed-phase liquid chromatography–electrospray ionization–mass spectrometry. Following extraction from the complex sediment matrix, reversed-phase LC is used to separate ladderane PC lipids based on their tail group hydrophobicity as well as their ether or ester link to the glycerol backbone in the sn-2 position. We investigate the presence of intact ladderane lipids in natural sediments displaying anammox activity and illustrate the use of a specific intact membrane forming PC lipid as a biomarker for viable anammox bacterial cells. The presented method can be used to elucidate the whereabouts of viable anammox bacteria, subsequently enabling an estimation of anammox activity. This will greatly increase the knowledge of anammox bacteria and their importance in the global nitrogen cycle.

Collaboration


Dive into the Roger Karlsson's collaboration.

Top Co-Authors

Avatar

Owe Orwar

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Max Davidson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann-Sofie Cans

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik Kristiansson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fredrik Boulund

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aldo Jesorka

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge