Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger M. Samelson is active.

Publication


Featured researches published by Roger M. Samelson.


Science | 2011

The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll

Dudley B. Chelton; Peter Gaube; Michael G. Schlax; Jeffrey J. Early; Roger M. Samelson

Large ocean eddies are the cause of some sea-surface height and chlorophyll anomalies previously ascribed to Rossby waves. Oceanic Rossby waves have been widely invoked as a mechanism for large-scale variability of chlorophyll (CHL) observed from satellites. High-resolution satellite altimeter measurements have recently revealed that sea-surface height (SSH) features previously interpreted as linear Rossby waves are nonlinear mesoscale coherent structures (referred to here as eddies). We analyze 10 years of measurements of these SSH fields and concurrent satellite measurements of upper-ocean CHL to show that these eddies exert a strong influence on the CHL field, thus requiring reassessment of the mechanism for the observed covariability of SSH and CHL. On time scales longer than 2 to 3 weeks, the dominant mechanism is shown to be eddy-induced horizontal advection of CHL by the rotational velocities of the eddies.


Journal of Climate | 2010

Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension

Kathryn A. Kelly; R. Justin Small; Roger M. Samelson; Bo Qiu; Terrence M. Joyce; Young-Oh Kwon; Meghan F. Cronin

Abstract In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean. Their potential contribution to the climate system motivated major parallel field programs in both the North Pacific [Kuroshio Extension System Study (KESS)] and the North Atlantic [Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE)], and preliminary observations and analyses from these programs highlight that complexity. The Gulf Stream (GS) in the North Atlantic and the Kuroshio Extension (KE) in the North Pacific have broad similarities, as subtropical gyre WBCs, but they also have significant differences, which affect the regional air–sea exchange processes and their larger-scale interactions. The 15-yr satellite altimeter data record, which provides a rich source of information, is combined here with the longer historical record from in situ data to describe and compare the curr...


Journal of Physical Oceanography | 1992

Fluid Exchange across a Meandering Jet

Roger M. Samelson

Abstract The motion of fluid parcels in a two-dimensional kinematic model of a meandering jet is investigated using Melnikovs method. The study is motivated by a recent analysis of float trajectories in the Gulf Stream. The results indicate that the efficiency of cross-jet exchange induced by fluctuating meander amplitudes depends strongly on the frequency of the fluctuations. For high frequencies (≳0.04 cpd), exchange between the core of the jet and regions of “trapped” fluid moving with the meander is preferred, while for low frequencies (≲0.04 cpd), exchange between the “trapped” fluid and the slow-moving fluid surrounding the jet is preferred. Propagating waves superimposed on the meandering jet can efficiently cause exchange between regimes when their phase speeds roughly match the basic flow velocities along the regime boundaries. Numerical results suggest that exchange across the center of the jet is less efficient than exchange between adjacent regimes so that the meandering jet will tend to stir...


Journal of Physical Oceanography | 2007

Summertime Coupling between Sea Surface Temperature and Wind Stress in the California Current System

Dudley B. Chelton; Michael G. Schlax; Roger M. Samelson

Satellite observations of wind stress and sea surface temperature (SST) are analyzed to investigate ocean–atmosphere interaction in the California Current System (CCS). As in regions of strong SST fronts elsewhere in the World Ocean, SST in the CCS region is positively correlated with surface wind stress when SST fronts are strong, which occurs during the summertime in the CCS region. This ocean influence on the atmosphere is apparently due to SST modification of stability and mixing in the atmospheric boundary layer and is most clearly manifest in the derivative wind stress fields: wind stress curl and divergence are linearly related to, respectively, the crosswind and downwind components of the local SST gradient. The dynamic range of the Ekman upwelling velocities associated with the summertime SST-induced perturbations of the wind stress curl is larger than that of the upwelling velocities associated with the mean summertime wind stress curl. This suggests significant feedback effects on the ocean, which likely modify the SST distribution that perturbed the wind stress curl field. The atmosphere and ocean off the west coast of North America must therefore be considered a fully coupled system. It is shown that the observed summertime ocean– atmosphere interaction is poorly represented in the NOAA North American Mesoscale Model (formerly called the Eta Model). This is due, at least in part, to the poor resolution and accuracy of the SST boundary condition used in the model. The sparse distribution of meteorological observations available over the CCS for data assimilation may also contribute to the poor model performance.


Journal of Physical Oceanography | 2015

Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping

Peter Gaube; Dudley B. Chelton; Roger M. Samelson; Michael G. Schlax; Larry W. O’Neill

AbstractThree mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, e...


Journal of Physical Oceanography | 1998

Large-Scale Circulation with Locally Enhanced Vertical Mixing

Roger M. Samelson

The influence of localized regions of intensified vertical mixing on the stratification and circulation in a largescale ocean model is investigated with idealized numerical experiments. Numerical solutions are obtained of a closed-basin, single-hemisphere ocean model based on the planetary geostrophic equations. Mesoscale eddy effects are minimized, and vertical mixing at the turbulent microscale is represented by a vertical diffusivity ky . Solutions with uniform ky are contrasted with a ‘‘localized mixing’’ solution, in which ky increases by two orders of magnitude from its interior value (0.2 3 1024 m2 s21) in a region 500 km wide adjacent to the vertical eastern boundary. When ky is uniform, the stratification beneath the ventilated thermocline is characterized by a single vertical scale. In contrast, the localized vertical mixing supports a deep diffusive thermocline with two distinct vertical scales: an internal boundary layer centered at the base of the ventilated thermocline (roughly 1000-m depth) and an abyssal thermocline whose vertical scale is set in the region of large ky . This stratification is qualitatively similar to observed deep ocean stratification. In contrast to the Stommel‐Arons meridional abyssal flow that arises in the model when ky is uniform and small, the localized mixing solution has primarily zonal flow in the abyssal interior, with meridional motion confined to boundary layers. An advective‐diffusive balance is established in the region of enhanced mixing. The near-surface circulation is dominated by westward zonal flow in the southern half of the interior, northward flow along the western boundary, and eastward flow in the northern half of the interior, while the pattern of flow in the abyssal interior is essentially the reverse. The circulation is closed by upwelling in the mixing region and downwelling along the northern boundary. Meridional motion in the mixing region is consistent with the Sverdrup vorticity balance, with northward flow at depth and southward flow near the surface. The source water for the deep circulation is confined to a narrow range of the coldest temperature classes in the basin, while the middepth subtropical thermocline is filled with warmer deep water that enters the gyre as cold deep water and then is modified in the eastern mixing region.


Journal of Physical Oceanography | 2011

The Evolution and Propagation of Quasigeostrophic Ocean Eddies

Jeffrey J. Early; Roger M. Samelson; Dudley B. Chelton

AbstractThe long-term evolution of initially Gaussian eddies is studied in a reduced-gravity shallow-water model using both linear and nonlinear quasigeostrophic theory in an attempt to understand westward-propagating mesoscale eddies observed and tracked by satellite altimetry. By examining both isolated eddies and a large basin seeded with eddies with statistical characteristics consistent with those of observed eddies, it is shown that long-term eddy coherence and the zonal wavenumber–frequency power spectral density are best matched by the nonlinear model. Individual characteristics of the eddies including amplitude decay, horizontal length scale decay, and zonal and meridional propagation speed of a previously unrecognized quasi-stable state are examined. The results show that the meridional deflections from purely westward flow (poleward for cyclones and equatorward for anticyclones) are consistent with satellite observations. Examination of the fluid transport properties of the eddies shows that an...


Journal of the Atmospheric Sciences | 1992

Supercritical marine-layer flow along a smoothly varying coastline

Roger M. Samelson

Abstract A model for hydraulically supercritical atmospheric marine-layer flow along a smoothly varying coastline is formulated and solved numerically. The model is motivated by a recent comparison of CODE observations to a simple hydraulic theory, which suggested the presence of an expansion fan and a compression jump downstream of topographic features. The marine layer is modeled as a homogeneous rotating fluid layer decelerated by surface friction and forced by imposed upper-level pressure gradients. The equations are solved by a characteristic-based gridpoint scheme. The results indicate that the expansion fan is a robust feature that persists under most conditions in the present more realistic model, but is dramatically altered in structure by the presence of friction, while the jump may weaken rapidly offshore due mainly to offshore variations of the layer height upstream of the jump. The agreement between observations and model predictions is good enough to suggest that a first-order description of...


Journal of the Atmospheric Sciences | 2001

Instability of the Chaotic ENSO: The Growth-Phase Predictability Barrier

Roger M. Samelson; E. L. I. Tziperman

The local predictability of the El Nino-Southern Oscillation (ENSO) is examined by the analysis of the evolution of small disturbances to an unstable 4.3-yr ENSO cycle in the Cane-Zebiak model forced by perpetual July conditions. The 4.3-yr cycle represents the dominant near-recurrent behavior in this weakly chaotic regime, so analysis of this single cycle gives useful insights into the dynamics of the irregular oscillation. Growing and neutral time-dependent eigenmodes of the unstable cycle are computed. Disturbance growth analyses based on these eigenmodes, and on singular vectors computed in the unstable-neutral subspace, suggest that there is a predictability barrier associated with the growth phase of El Nino conditions. This barrier arises because the growth mechanism for disturbances to the cycle is nearly the same as the growth mechanism for the El Nino conditions themselves. The local amplification of disturbances during the growth phase is several times greater than the eigenmode amplification associated with time-dependent (Floquet) normal-mode instability of the cycle. It is suggested that the existence of an ENSO predictability barrier tied to the growth phase of El Nino conditions is likely a robust result, independent of the particular model.


Bulletin of the American Meteorological Society | 2009

The Climode Field Campaign: Observing the Cycle of Convection and Restratification over the Gulf Stream

John Marshall; Raffaele Ferrari; Gael Forget; Guillaume Maze; Andreas J. Andersson; Nicholas R. Bates; William K. Dewar; Scott C. Doney; D. Fratantoni; Terrence M. Joyce; Fiammetta Straneo; John M. Toole; Robert A. Weller; J. Edson; Michael C. Gregg; Kathryn A. Kelly; S. Lozier; J. Palter; Rick Lumpkin; Roger M. Samelson; Eric D. Skyllingstad; K. Silverthorne; Lynne D. Talley; Leif N. Thomas

Abstract A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.

Collaboration


Dive into the Roger M. Samelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. Allen

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary D. Egbert

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge