Roger Pocock
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger Pocock.
Nature Structural & Molecular Biology | 2012
Anna Mosbech; Ian Gibbs-Seymour; Konstantinos Kagias; Tina Thorslund; Petra Beli; Lou Klitgaard Povlsen; Sofie V. Nielsen; Stine Smedegaard; Garry Sedgwick; Claudia Lukas; Rasmus Hartmann-Petersen; Jiri Lukas; Chunaram Choudhary; Roger Pocock; Simon Bekker-Jensen; Niels Mailand
Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle–regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress requires its ubiquitin-binding UBZ domain and PCNA-binding PIP box motif but is independent of RAD18-mediated PCNA monoubiquitylation. Via a conserved SHP box, DVC1 recruits the ubiquitin-selective chaperone p97 to blocked replication forks, which may facilitate p97-dependent removal of translesion synthesis (TLS) DNA polymerase η (Pol η) from monoubiquitylated PCNA. DVC1 knockdown enhances UV light–induced mutagenesis, and depletion of human DVC1 or the Caenorhabditis elegans ortholog DVC-1 causes hypersensitivity to replication stress–inducing agents. Our findings establish DVC1 as a DNA damage–targeting p97 adaptor that protects cells from deleterious consequences of replication blocks and suggest an important role of p97 in ubiquitin-dependent regulation of TLS.
Nature Neuroscience | 2008
Roger Pocock; Oliver Hobert
Oxygen deprivation can cause severe defects in human brain development, yet the precise cellular and molecular consequences of varying oxygen levels on nervous system development are unknown. We found that hypoxia caused specific axon pathfinding and neuronal migration defects in C. elegans that result from the stabilization of the transcription factor HIF-1 (hypoxia-inducible factor 1) in neurons and muscle. Stabilization of HIF-1 through removal of the proteasomal HIF-1 degradatory pathway phenocopies the hypoxia-induced neuronal defects. Hypoxia-mediated defects in nervous system development depended on signaling through the insulin-like receptor DAF-2, which serves to control the level of reactive oxygen species that also affects axon pathfinding. Hypoxia exerted its effect on axon pathfinding, at least in part, through HIF-1–dependent regulation of the Eph receptor VAB-1. HIF-1–mediated upregulation of VAB-1 protected embryos from hypoxia-induced lethality, but increased VAB-1 levels elicited aberrant axon pathfinding. Similar genetic pathways may cause aberrant human brain development under hypoxic conditions.
Current Biology | 2009
Christopher O. Ortiz; Serge Faumont; Jun Takayama; Heidi K Ahmed; Andrew D Goldsmith; Roger Pocock; Kathryn E. McCormick; Hirofumi Kunimoto; Yuichi Iino; Shawn R. Lockery; Oliver Hobert
BACKGROUND Even though functional lateralization is a common feature of many nervous systems, it is poorly understood how lateralized neural function is linked to lateralized gene activity. A bilaterally symmetric pair of C. elegans gustatory neurons, ASEL and ASER, senses a number of chemicals in a left/right asymmetric manner and therefore serves as a model to study the genetic basis of functional lateralization. The extent of functional lateralization of the ASE neurons and genes responsible for the left/right asymmetric activity of ASEL and ASER is unknown. RESULTS We show here that a substantial number of salt ions are sensed in a left/right asymmetric manner and that lateralized salt responses allow the worm to discriminate between distinct salt cues. To identify molecules that may be involved in sensing salt ions and/or transmitting such sensory information, we examined the chemotaxis behavior of animals harboring mutations in eight different receptor-type, transmembrane guanylyl cyclases (encoded by gcy genes), which are expressed in either ASEL (gcy-6, gcy-7, gcy-14), ASER (gcy-1, gcy-4, gcy-5, gcy-22), or ASEL and ASER (gcy-19). Disruption of a particular ASER-expressed gcy gene, gcy-22, results in a broad chemotaxis defect to nearly all salts sensed by ASER, as well as to a left/right asymmetrically sensed amino acid. In contrast, disruption of other gcy genes resulted in highly salt ion-specific chemosensory defects. CONCLUSIONS Our findings broaden our understanding of lateralities in neural function, provide insights into how this laterality is molecularly encoded, and reveal an unusual multitude of molecules involved in gustatory signal transduction.
Nature Neuroscience | 2010
Roger Pocock; Oliver Hobert
Dedicated neuronal circuits enable animals to engage in specific behavioral responses to environmental stimuli. We found that hypoxic stress enhanced gustatory sensory perception via previously unknown circuitry in Caenorhabditis elegans. The hypoxia-inducible transcription factor HIF-1 upregulated serotonin (5-HT) expression in specific sensory neurons that are not normally required for chemosensation. 5-HT subsequently promoted hypoxia-enhanced sensory perception by signaling through the metabotropic G protein–coupled receptor SER-7 in an unusual peripheral neuron, the M4 motor neuron. M4 relayed this information back into the CNS via the FMRFamide-related neuropeptide FLP-21 and its cognate receptor, NPR-1. Thus, physiological detection of hypoxia results in the activation of an additional, previously unrecognized circuit for processing sensory information that is not required for sensory processing under normoxic conditions.
Science | 2013
M. E. Pedersen; Goda Snieckute; Konstantinos Kagias; Camilla Nehammer; Hinke A.B. Multhaupt; John R. Couchman; Roger Pocock
Extracellular Regulation During Caenorhabditis elegans development, the hermaphrodite-specific neurons (HSNs) migrate and then extend axons toward their functional targets. Posttranslational modification of heparan sulfate proteoglycans are important for HSN development, and so Pedersen et al. (p. 1404) tested the effect of disrupting or reducing chondroitin and heparan sulfate synthesis during C. elegans development. The results suggest that proteoglycan biosynthesis is tightly regulated by a microRNA pathway to shape the cell surface glycosylation architecture required to direct neuronal migration. A conserved microRNA affects the characteristics of extracellular proteoglycans that direct migrating neurons in nematodes. An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5′-diphosphate–sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.
Pflügers Archiv: European Journal of Physiology | 2011
Roger Pocock
AbstractmicroRNAs (miRNAs) were discovered nearly two decades ago by researchers who sought to understand how basic developmental mechanisms work in the nematode Caenorhabditis elegans. Since the identification of conserved miRNA families in higher eukaryotes, there has been an explosion of interest into how these tiny RNA molecules function. miRNAs are 20–24 nucleotide non-coding RNA molecules that predominantly regulate transcripts of target genes through translational inhibition. Much recent interest has focused on the influence of miRNAs on homeostatic regulation, and in particular, hypoxic responses. The ability to sense and respond to hypoxia is of fundamental importance to aerobic organisms and dysregulated oxygen homeostasis is a hallmark in the pathophysiology of cancer, neurological dysfunction, myocardial infarction, and lung disease. miRNAs are ideal mediators of hypoxic stress responses as they are able to modify gene expression both rapidly and reversibly. This enables miRNA-mediated gene regulatory circuits to modify metabolic networks with immaculate precision and control. Therefore, one may consider miRNAs as molecular rheostats which effect tuning and switching of regulatory circuits to facilitate survival and adaptation to hypoxic conditions. Such miRNA-mediated regulatory circuits would provide flexible and conditional alternatives to “conventional” transcriptional regulation. Here, I review recent discoveries that have boosted our understanding of miRNA regulation of hypoxia and discuss where future breakthroughs in this area may be made.
Current Biology | 2006
Thomas Boulin; Roger Pocock; Oliver Hobert
BACKGROUND The ventral midline is a prominent structure in vertebrate and invertebrate nervous systems that provides crucial topological information for guiding axons to their appropriate target destinations. Rather than being composed of specialized midline glia cells as in many other species, the embryonic midline of the nematode Caenorhabditis elegans is physically defined by motoneuron cell bodies that separate the left from the right ventral cord fascicles. Their function during development, if any, is not known. RESULTS We show here that besides being components of the postembryonic locomotory circuit, these embryonic motoneurons (eMNs) actively provide midline guidance information for a specific subset of ventral midline axons. This information is provided in the form of a novel, cell-surface-anchored immunoglobulin superfamily (IgSF) member, WRK-1. WRK-1 acts in eMNs to prevent follower axons from inappropriately crossing the ventral midline. We describe the function of the Eph receptor vab-1 and multiple ephrin ligands at the midline, and we show by double mutant analysis and physical interaction tests that WRK-1 functionally interacts with the Eph receptor system. This interaction appears to occur exclusively in the context of axon guidance at the ventral midline but not in other cellular contexts, thereby suggesting that Eph receptor signaling is mechanistically distinct in different tissue types. CONCLUSIONS Our studies reveal cellular and molecular components of axon midline patterning and suggest that Ephrin signaling relies on previously unknown accessory components.
PLOS ONE | 2012
Julia P. Brandt; Sonya Aziz-Zaman; Vaida Juozaityte; Luis A. Martinez-Velazquez; Jakob Gramstrup Petersen; Roger Pocock; Niels Ringstad
Many animals possess neurons specialized for the detection of carbon dioxide (CO2), which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO2. The ETS-5 transcription factor is necessary for the specification of CO2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO2-detection and transforms neurons into CO2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO2-sensing neurons in other phyla.
Frontiers in Neurology | 2015
Gregory M. Davis; Matilda Haas; Roger Pocock
MicroRNAs (miRNAs) are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of the brain requires the precise coordination of multilayered gene regulatory networks. The flexibility, speed, and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavor to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.
Frontiers in Genetics | 2012
Konstantinos Kagias; Camilla Nehammer; Roger Pocock
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.