Roger R. Lew
York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger R. Lew.
Plant Physiology | 2002
Sergey Shabala; Roger R. Lew
Hyperosmotic stress is known to significantly enhance net uptake of inorganic ions into plant cells. Direct evidence for cell turgor recovery via such a mechanism, however, is still lacking. In the present study, we performed concurrent measurements of net ion fluxes (with the noninvasive microelectrode ion flux estimation technique) and cell turgor changes (with the pressure-probe technique) to provide direct evidence that inorganic ion uptake regulates turgor in osmotically stressed Arabidopsis epidermal root cells. Immediately after onset of hyperosmotic stress (100/100 mmmannitol/sorbitol treatment), the cell turgor dropped from 0.65 to about 0.25 MPa. Turgor recovery started within 2 to 10 min after the treatment and was accompanied by a significant (30–80 nmol m−2 s−1) increase in uptake of K+, Cl−, and Na+ by root cells. In most cells, almost complete (>90% of initial values) recovery of the cell turgor was observed within 40 to 50 min after stress onset. In another set of experiments, we combined the voltage-clamp and the microelectrode ion flux estimation techniques to show that this process is, in part, mediated by voltage-gated K+ transporters at the cell plasma membrane. The possible physiological significance of these findings is discussed.
Fungal Biology | 2011
Meritxell Riquelme; Oded Yarden; Salomon Bartnicki-Garcia; Barry J. Bowman; Ernestina Castro-Longoria; Stephen J. Free; André Fleißner; Michael Freitag; Roger R. Lew; Rosa R. Mouriño-Pérez; Michael Plamann; Carolyn G. Rasmussen; Corinna Richthammer; Robert W. Roberson; Eddy Sánchez-León; Stephan Seiler; Michael K. Watters
Neurospora crassa has been at the forefront of biological research from the early days of biochemical genetics to current progress being made in understanding gene and genetic network function. Here, we discuss recent developments in analysis of the fundamental form of fungal growth, development and proliferation -- the hypha. Understanding the establishment and maintenance of polarity, hyphal elongation, septation, branching and differentiation are at the core of current research. The advances in the identification and functional dissection of regulatory as well as structural components of the hypha provide an expanding basis for elucidation of fundamental attributes of the fungal cell. The availability and continuous development of various molecular and microscopic tools, as utilized by an active and co-supportive research community, promises to yield additional important new discoveries on the biology of fungi.
Nature Reviews Microbiology | 2011
Roger R. Lew
The mechanisms underlying the growth of fungal hyphae are rooted in the physical property of cell pressure. Internal hydrostatic pressure (turgor) is one of the major forces driving the localized expansion at the hyphal tip which causes the characteristic filamentous shape of the hypha. Calcium gradients regulate tip growth, and secretory vesicles that contribute to this process are actively transported to the growing tip by molecular motors that move along cytoskeletal structures. Turgor is controlled by an osmotic mitogen-activated protein kinase cascade that causes de novo synthesis of osmolytes and uptake of ions from the external medium. However, as discussed in this Review, turgor and pressure have additional roles in hyphal growth, such as causing the mass flow of cytoplasm from the basal mycelial network towards the expanding hyphal tips at the colony edge.
Journal of Cell Science | 2002
Lorelei B. Silverman-Gavrila; Roger R. Lew
Hyphal extension in fungi requires a tip-high Ca2+ gradient, which is generated and maintained internally by inositol (1,4,5)-trisphosphate (IP3)-induced Ca2+ release from tip-localized vesicles and subapical Ca2+ sequestration. Using the planar bilayer method we demonstrated the presence of two types of IP3-activated Ca2+ channels in Neurospora crassa membranes with different conductances: one low (13 picosiemens), the other high (77 picosiemens). On sucrose density gradients the low conductance channel co-localized with endoplasmic reticulum and plasma membrane, and the high conductance channel co-localized with vacuolar membranes. We correlated the effect of inhibitors on channel activity with their effect on hyphal growth and Ca2+ gradients. The inhibitor of IP3-induced Ca2+ release, 2-aminoethoxidiphenylborate (2-APB), inhibits both channels, while heparin, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8) and dantrolene inhibit only the large conductance channel. Because 2-APB inhibits hyphal growth and dissipates the tip-high cytosolic [Ca2+] gradient, whereas heparin microinjection, TMB-8 and dantrolene treatments do not affect growth, we suggest that the small conductance channel generates the obligatory tip-high Ca2+ gradient during hyphal growth. Since IP3 production must be catalyzed by tip-localized phospholipase C, we show that a number of phospholipase C inhibitors [neomycin, 1-[6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]- 1H-pyrrole-2,5-dione (U-73122) (but not the inactive pyrrolidine U-73343), 3-nitrocoumarin] inhibit hyphal growth and affect, similarly to 2-APB, the location of vesicular Ca2+ imaged by chlortetracycline staining.
Plant Physiology | 1996
Roger R. Lew
Actively growing Arabidopsis thaliana L. (Columbia wild type) root hairs were used to examine the interplay between cell turgor pressure and electrical properties of the cell: membrane potential, conductance, cell-to-cell coupling, and input resistance. Pressure was directly modulated using a pressure probe or indirectly by changing the extracellular osmolarity. Direct modulation of pressure in the range of 0 to about 15 x 105 Pa (normal turgor pressure was 6.8 [plus or minus] 2.0 x 105 Pa, n = 29) did not affect the membrane potential, conductance, coupling, or input resistance. Indirect modulation of turgor pressure by adding (hyperosmotic) or removing (hypo-osmotic) 200 mM mannitol/sorbitol affected the potential and conductance but not cell-to-cell coupling. Hypo-osmotic treatment depolarized the potential about 40 mV from an initial potential of about -190 mV and increased membrane conductance, consistent with an increase in anion efflux from the cell. Hyperosmotic treatment hyperpolarized the cell about 25 mV from the same initial potential and decreased conductance, consistent with a decline in cation influx. The results are likely due to the presence of an “osmo-sensor,” rather than a “turgor-sensor,” regulating the cells response to osmotic stress.
Plant Science | 2000
Roger R. Lew; John D.W. Dearnaley
Abstract Extracellular nucleotides depolarize the membrane potential of growing root hairs. ATP and ADP (at 1 mM) caused depolarizations of about 100 mV. The relative effectiveness of other nucleotides was ATP=ADP=GTP>AMP>TTP (=adenosine)>CTP. Phosphate had no effect, indicating that the membrane potential changes were not a consequence of nucleotide hydrolysis and phosphate uptake. The ATP and ADP effects were characterized in more detail: half-maximal depolarization occurred at 0.4 mM for ATP, and at 10 μM for ADP; membrane conductance was unchanged after treatment with either nucleotide. After wash-out, the potential usually did not completely recover, and conductance declined. Additions of ADP at a concentration resulting in depolarization did not affect cytosolic Ca 2+ levels as monitored directly with dextran-conjugated calcium green or indirectly by cytoplasmic streaming (which was unaffected). Growth increased slightly (22–38%) after ADP perfusion. Since purines were more potent, the cause of the depolarization could be a plant homolog of an animal purinergic receptor. The surprisingly high specificity of the ADP effect on the membrane potential suggests ADP may function as an extracellular message, but its potential function is unknown. It may serve as a signal during cellular wounding, or as a sensor of bacterial/fungal activity near the root surface.
European Journal of Cell Biology | 2001
Lorelei B. Silverman-Gavrila; Roger R. Lew
Previous work has shown that hyphal elongation in the fungus Neurospora crassa requires a tip-high cytosolic Ca2+ gradient. The source of the Ca2+ appears to be intracellular stores as there is no net transplasma membrane Ca2+ flux at the elongating hyphal tip and modification of ion fluxes across the plasma membrane using voltage clamp is without effect on tip growth. To decode the internal mechanisms which generate and maintain the tip-high Ca2+ gradient we first identified calcium regulators which affect hyphal growth and morphology, then determined how they modify cytosolic [Ca2+] and the actin cytoskeleton using fluorescent dyes and confocal microscopy. Cyclopiazonic acid (a known inhibitor of the endoplasmic reticulum calcium ATPase) inhibits growth and increases cytoplasmic [Ca2+] in the basal region 10-25 microm behind the hyphal tip. 2-APB (2-aminoethoxydiphenyl borate, an inhibitor of IP3-induced Ca2+ release) inhibits hyphal elongation and dissipates the tip-high Ca2 gradient 0-10 microm from the tip. Microinjections of the IP3 receptor agonists adenophostin A and IP3 (but not control microinjections of the biologically inactive L-IP3) transiently inhibited growth and induced subapical branches. IP3 microinjections, but not L-IP3, lowered tip-localized [Ca2+] and increased basal [Ca2+]. Even though their effect on [Ca2+] gradients was different, both cyclopiazonic acid and 2-APB disrupted similarly the normal actin pattern at the hyphal apex. Conversely, disruption of actin with latrunculin B dissipated tip-localized Ca2+. We conclude that the tip-high Ca2+ gradient is generated internally by Ca2+ sequestration into endoplasmic reticulum behind the tip and Ca2+ release via an IP3 receptor from tip-localized vesicles whose location is maintained by the actin cytoskeleton.
Protoplasma | 2000
L. B. Silverman-Gavrila; Roger R. Lew
SummaryWe examined the ionic regulation of tip growth inNeurospora crassa by a combination of electrophysiology and confocal microscopy. To determine if transmembrane ionic fluxes are required for tip growth, we voltage clamped the membrane from −200 to +50 mV. In this voltage range, transmembrane ionic fluxes would either reverse (e.g., K+) or change dramatically (e.g., Ca2+ influx) but had no effect on hyphal growth rates. Therefore, ionic fluxes (including Ca2+ influx) may not be required for tip growth. However, intracellular Ca2+ may still play an obligatory role in tip growth. To assess this possibility, we first increased cytosolic Ca2+ directly by ionophoresis. Elevated Ca2+ induced subapical branch initiation, often multiple tips. At hyphal tips, fluorescence ratio imaging using fluo-3 and fura-red revealed a pronounced tip-high Ca2+ gradient within 10 μm of the tip in growing hyphae which was not observed in nongrowing hyphae. Injection of the Ca2+ chelator 1,2-bis(ortho-aminophenoxy)ethane-N,N,N′,N′-tetrapotassium acetate consistently inhibited growth concomitantly with a depletion of intracellular Ca2+ and dissipation of the tip-high gradient. We conclude that Ca2+ plays a regulatory role in tip initiation and the maintenance of tip growth. Because plasma membrane ionic fluxes do not play a role in tip growth, we suggest that the tip-high Ca2+ gradient is generated from intracellular Ca2+ stores in the ascomyceteN. crassa.
Planta | 1994
Roger R. Lew
Voltage clamp was used to measure the voltage dependence of cell-to-cell coupling via plasmodesmata between higher-plant cells (root hairs of Arabidopsis thaliana (L.) Heynh.). In addition, ionophoresis was used to introduce a variety of ions [Ca2+, inositol-trisphosphate, Li+, K+, Mg2+, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′, N′-tetraacetic acid (EGTA), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), H+, and OH−] to examine whether they regulate cell-to-cell coupling. Electrical coupling showed high variability in this single cell type at the same developmental stage; the coupling ratio ranged from near 0% to about 90% with a mean value of 32%. It was voltage independent for intracellular voltage gradients (transplasmodesmatal) of -163 to 212 mV. While Ca2+ closes the plasmodesmatal connections (at concentrations higher than those causing cessation of cytoplasmic streaming), inositol-trisphosphate and lithium are without effect. Apparently, inositol-trisphosphate may not cause increased cytosolic Ca2+ in root hairs. Alkalinization by OH ionophoresis caused a modest decline in cell-to-cell coupling, as did acidification by H+ ionophoresis (to an extent causing the cell to become flacid). Increases in cytosolic K+, Mg2+, and the calcium chelator BAPTA by ionophoresis had no effect on cell-to-cell coupling. The regulation (and lack thereof) reported here for plant plasmodesmata is quite similar to that of gap junctions.
Eukaryotic Cell | 2011
Brad Cavinder; Ahmed Hamam; Roger R. Lew; Frances Trail
ABSTRACT The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ∼50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation.