Roger S. McLeod
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger S. McLeod.
Biochimica et Biophysica Acta | 1994
Zemin Yao; Roger S. McLeod
Human apolipoprotein (apo) B-100 is required for the synthesis and secretion of hepatic triacyglycerol-rich lipoproteins. This review summarizes recent developments in understanding the interaction of cis-acting DNA sequences and trans-acting protein factors in regulation of apo B gene expression and apo B mRNA editing, and the role of structural determinants of apo B-100 in the assembly and secretion of hepatic lipoproteins. In particular, experimental results obtained from cell culture studies using techniques of molecular and cellular biology are described and discussed. The relationship between apo B length and its ability to recruit lipids is presented, and the involvement of factors other than apo B in hepatic triacylglycerol-rich lipoprotein production is discussed.
The American Journal of Clinical Nutrition | 2004
Roger S. McLeod; Andrea M. LeBlanc; Morgan Langille; Patricia L. Mitchell; Deborah L. Currie
Conjugated linoleic acids (CLAs) are isomeric forms of the 18:2 fatty acid that contain conjugated sites of unsaturation. Although CLAs are minor components of the diet, they have many reported biological activities. For nearly a decade, the potential for CLA to modify the atherosclerotic process has been examined in animal models, and studies of supplementation of the human diet with CLA were started with the anticipation that such an intervention could also reduce the risk of cardiovascular disease. Central to the hypothesis is the expectation that dietary modification could alter plasma lipid and lipoprotein metabolism toward a more cardioprotective profile. This review examines the evidence in support of the hypothesis and the mechanistic studies that lend support for a role of CLA in hepatic lipid and lipoprotein metabolism. Although there are still limited studies in strong support of a role for CLA in the reduction of early atherosclerotic lesions, there has been considerable progress in defining the mechanisms of CLA action. CLA could primarily modulate the metabolism of fatty acids in the liver. The tools are now available to examine isomer-specific effects of CLA on hepatic lipid and lipoprotein metabolism and the potential of CLA to modify hepatic gene expression patterns. Additional animal and cell culture studies will increase our understanding of these unusual fatty acids and their potential for health benefits in humans.
Journal of Biological Chemistry | 1996
Roger S. McLeod; Yuwei Wang; Shelley Wang; Antonio E. Rusiñol; Philip H. Links; Zemin Yao
We studied the structural requirements of apolipoprotein (apo) B for assembly of very low density lipoproteins (VLDL) using rat hepatoma McA-RH7777 cells expressing human apoB (h-apoB). Recombinant h-apoB48, like endogenous rat apoB48 (r-apoB48), was secreted as VLDL in addition to high density lipoproteins (HDL) by transfected cells, indicating that the N-terminal 48% of apoB contains sequences sufficient for VLDL assembly. Truncation of the C terminus of h-apo-B48 to -B42 or -B37 had little effect on the ability of apoB to assemble VLDL, whereas truncation to -B34 or -B29 markedly diminished or abolished VLDL formation. None of the truncations affected the integration of apoB into HDL. To determine whether the ability to assemble VLDL is governed by apoB length or by sequences beyond apoB29, we created chimeric proteins that contained human apoA-I and a segment derived from between the C-terminal 29 and 34%, 34 and 37%, or 37 and 42% of apoB100. The resulting chimeras, namely AI/B29-34, AI/B34-37, and AI/B37-42, were secreted by the transfected cells as lipoproteins with buoyant density (d < 1.006 g/ml), electrophoretic mobility (pre-β), and size characteristics of human plasma VLDL. The chimeras could assemble discrete VLDL particles devoid of endogenous r-apoB100, and could actively recruit triglycerides and phospholipids into the lipoproteins. However, these chimeras were secreted inefficiently. Pulse-chase analysis showed that less than 5% of the newly synthesized AI/B proteins were secreted, and more than 70% was degraded intracellularly. Degradation of the chimeras could be blocked by the cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal, but the treatment did not enhance their secretion. Protease protection analysis of microsomes isolated from transfected cells indicated that >65% of AI/B chimeras (compared with <25% of r-apoB100) were inaccessible to exogenous trypsin. These data suggest that the recruitment of large quantities of triglycerides during VLDL formation is not governed simply by apoB length, but is mediated by short hydrophobic sequences ranging from 152 to 237 amino acids (3-5%) of apoB. The existence of multiple such hydrophobic sequences within apoB48 may facilitate efficient assembly of hepatic VLDL particles.
Journal of Biological Chemistry | 2007
John R. Burnett; Shumei Zhong; Zhenghui G. Jiang; Amanda J. Hooper; Eric A. Fisher; Roger S. McLeod; Yang Zhao; P. Hugh R. Barrett; Robert A. Hegele; Frank M. van Bockxmeer; Hongyu Zhang; Dennis E. Vance; C. James McKnight; Zemin Yao
Familial hypobetalipoproteinemia (FHBL) is associated with mutations in the APOB gene. We reported the first missense APOB mutation, R463W, in an FHBL kindred (Burnett, J. R., Shan, J., Miskie, B. A., Whitfield, A. J., Yuan, J., Tran, K., Mc-Knight, C. J., Hegele, R. A., and Yao, Z. (2003) J. Biol. Chem. 278, 13442-13452). Here we identified a second nonsynonymous APOB mutation, L343V, in another FHBL kindred. Heterozygotes for L343V (n = 10) had a mean plasma apoB at 0.31 g/liter as compared with 0.80 g/liter in unaffected family members (n = 22). The L343V mutation impaired secretion of apoB-100 and very low density lipoproteins. The secretion efficiency was 20% for B100wt and 10% for B100LV and B100RW. Decreased secretion of mutant apoB-100 was associated with increased endoplasmic reticulum retention and increased binding to microsomal triglyceride transfer protein and BiP. Reduced secretion efficiency was also observed with B48LV and B17LV. Biochemical and biophysical analyses of apoB domain constructs showed that L343V and R463W altered folding of the α-helical domain within the N terminus of apoB. Thus, proper folding of the α-helical domain of apoB-100 is essential for efficient secretion.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1995
Chuen-Neu Wang; Roger S. McLeod; Zemin Yao; David N. Brindley
Oversecretion of apoB and decreased removal of apoB-containing lipoproteins by the liver results in hyperapobetalipoproteinemia, which is a risk factor for atherosclerosis. We investigated how dexamethasone, a synthetic glucocorticoid, affects the synthesis, degradation, and secretion of apoB-100 and apoB-48. Primary rat hepatocytes were incubated with dexamethasone for 16 hours. Incorporation of [35S]methionine into apoB-48 and apoB-100 was increased by 36% and 50%, respectively, with 10 nmol/L dexamethasone, despite a 28% decrease of incorporation into total cell proteins. However, Northern blot analysis revealed that dexamethasone (1 to 1000 nmol/L) did not significantly alter the steady-state concentrations of apoB mRNA, suggesting that the net increase in apoB synthesis may involve increased translational efficiency. The intracellular retention and the rate and efficiency of apoB secretion were determined by pulse-chase experiments in which the hepatocytes were labeled with [35S]methionine for 10 minutes or 1 hour, and the disappearance of labeled apoB from the cells and its accumulation in the medium were monitored. Degradation of labeled apoB-100 after a 3-hour chase in both protocols was decreased from about 50% to 30%, whereas degradation of apoB-48 was decreased from 30% to 10% to 20% by treatment with 10 or 100 nmol/L dexamethasone. Additionally, the half-life of decay (time required for 50% of labeled cell apoB-100 to disappear from the peak of radioactivity following a 10-minute pulse) was increased by treatment with 10 nmol/L dexamethasone from 77 to 112 minutes, and the value for apoB-48 increased from 145 to 250 minutes. Treatment with 100 nmol/L dexamethasone also stimulated secretion of 35S-labeled apoB-100 and apoB-48 by twofold and 1.5-fold, respectively. The increased secretion of apoB-100 and apoB-48 after dexamethasone treatment was confirmed by immunoblot analysis for apoB mass, and the effect was relatively specific since albumin secretion was not significantly changed. We conclude that glucocorticoids promote the secretion of hepatic apoB-containing lipoproteins by increasing the net synthesis of apoB-100 and apoB-48 and by decreasing the intracellular degradation of newly synthesized apoB. An increased action of glucocorticoids coupled with a decreased ability of insulin to suppress these effects in insulin resistance can lead to hyperapobetalipoproteinemia and an increased risk of atherosclerosis.
Journal of Nutrition | 2011
Shama V. Joseph; Hélène Jacques; Mélanie Plourde; Patricia L. Mitchell; Roger S. McLeod; Peter J. H. Jones
The usefulness of conjugated linoleic acid (CLA) as a nutraceutical remains ambiguous. Our objective was, therefore, to investigate the effect of CLA on body composition, blood lipids, and safety biomarkers in overweight, hyperlipidemic men. A double-blinded, 3-phase crossover trial was conducted in overweight (BMI ≥ 25 kg/m(2)), borderline hypercholesterolemic [LDL-cholesterol (C) ≥ 2.5 mmol/L] men aged 18-60 y. During three 8-wk phases, each separated by a 4-wk washout period, 27 participants consumed under supervision in random order 3.5 g/d of safflower oil (control), a 50:50 mixture of trans 10, cis 12 and cis 9, trans 11 (c9, t11) CLA:Clarinol G-80, and c9, t11 isomer:c9, t11 CLA. At baseline and endpoint of each phase, body weight, body fat mass, and lean body mass were measured by DXA. Blood lipid profiles and safety biomarkers, including insulin sensitivity, blood concentrations of adiponectin, and inflammatory (high sensitive-C-reactive protein, TNFα, and IL-6) and oxidative (oxidized-LDL) molecules, were measured. The effect of CLA consumption on fatty acid oxidation was also assessed. Compared with the control treatment, the CLA treatments did not affect changes in body weight, body composition, or blood lipids. In addition, CLA did not affect the β-oxidation rate of fatty acids or induce significant alterations in the safety markers tested. In conclusion, although no detrimental effects were caused by supplementation, these results do not confirm a role for CLA in either body weight or blood lipid regulation in humans.
Journal of Lipid Research | 2008
Jessica R. Miller; Pilaiwan Siripurkpong; Jennifer Hawes; Amin F. Majdalawieh; Hyo-Sung Ro; Roger S. McLeod
The adipocyte-derived secretory protein adiponectin functions as an insulin-sensitizing agent. In plasma, adiponectin exists as low, medium, and high molecular weight oligomers. Treatment with trans-10, cis-12 conjugated linoleic acid (t-10, c-12 CLA) reduces levels of adiponectin as well as triglyceride (TG) in mice and adipocyte cell culture models. The aim of this study was to determine whether the effects of t-10, c-12 CLA on adiponectin and TG are mediated through modulation of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). 3T3-L1 cells were treated either during or after differentiation into adipocytes with 100 μM t-10, c-12 CLA with or without 10 μM troglitazone, a PPARγ agonist, or 1 μM GW9662, a PPARγ antagonist, and adiponectin and TG levels were analyzed. Treatment with t-10, c-12 CLA reduced TG as well as cellular and secreted adiponectin levels and impaired the assembly of adiponectin oligomers. These changes were accompanied by decreases in PPARγ mass. Troglitazone was able to reverse the t-10, c-12 CLA-mediated decrease in TG levels and restore the assembly of adiponectin oligomers but was unable to restore adiponectin synthesis. Conversely, treatment with GW9662 decreased TG mass and impaired adiponectin oligomer assembly but did not decrease total adiponectin mass. In a reporter assay, t-10, c-12 CLA appeared to be a partial PPARγ agonist and prevented the stimulation of reporter activity by troglitazone. Therefore, the t-10, c-12 CLA isomer appears to alter adipocyte adiponectin metabolism through PPARγ-dependent and PPARγ-independent mechanisms.
Atherosclerosis | 2008
Margaret H. Cooper; Jessica R. Miller; Patricia L. Mitchell; Deborah L. Currie; Roger S. McLeod
Dietary supplementation with conjugated linoleic acid (CLA) has been shown, in several animal models, to decrease the development of atherosclerosis. The mechanism behind the anti-atherogenic properties of CLA is not clear. The objectives of this study were to determine the effect of CLA on atherosclerosis, lipoprotein and liver lipid metabolism, and plasma adiponectin and insulin in apoE(-/-) mice fed an atherogenic (16%, w/w fat; 1.25%, w/w cholesterol) diet. Mice were fed the diet with or without supplementation of linoleic acid (LA), c-9,t-11 CLA, t-10,c-12 CLA, or a 1:1 mixture of the two CLA isomers, at a concentration of 0.5% (w/w), for 12 weeks. Relative to the LA group, CLA supplementation had no significant effect on the lesion area in either en face preparations of the aorta or in aortic root cross-sections. Plasma triacylglycerol and cholesterol concentrations were higher in the t-10,c-12 CLA group than all other treatment groups and liver weight was also increased in this group due to a three-fold increase in liver triacylglycerol. Supplementation with t-10,c-12 CLA or mixed CLA reduced plasma adiponectin levels, whereas t-10,c-12 CLA increased plasma insulin levels. Liver triglycerides correlated directly with blood glucose and plasma insulin and inversely with plasma adiponectin. We conclude that dietary supplementation with CLA does not affect atherosclerosis of the apoE(-/-) mouse on a high-cholesterol diet. Furthermore, t-10,c-12 CLA causes adverse changes in adipocyte function and plasma and liver lipid metabolism, which are partially ameliorated by the inclusion of the c-9,t-11 CLA isomer.
Biochemistry | 2001
Kerry W. S. Ko; Rita Kohen Avramoglu; Roger S. McLeod; Jelena Vukmirica; Zemin Yao
The regulation of low density lipoprotein receptor-related protein (LRP) activity by insulin was studied using 3T3-L1 adipocytes. The LRP mRNA and protein expression were independent of differentiation state of the cells and of insulin treatment. In differentiated cells, insulin treatment acutely stimulated the cell surface presentation of LRP (approximately 2-fold) as evidenced by methylamine-activated alpha(2)-macroglobulin binding and by biotinylation of cell surface LRP. The increased cell surface presentation was accompanied by a 39% decrease in LRP level in the low density microsomes. The magnitude of insulin-stimulated cell surface presentation of LRP was similar to that of transferrin receptor but was much less than that of GLUT4. Both the increases in LRP and GLUT4 cell surface presentation upon insulin treatment were abolished by inhibition of phosphatidylinositide 3-kinase. The increased cell surface presentation of LRP was associated with proportionally increased endocytic activity, and the internalization rate constant (K(e)) was not decreased by insulin treatment. Thus, insulin treatment most likely stimulates recycling of LRP from an endosomal pool to the plasma membrane, which is regulated in a phosphatidylinositide 3-kinase-dependent manner in 3T3-L1 adipocytes.
Journal of Lipid Research | 2011
Eric A. Fisher; Neeraj A. Khanna; Roger S. McLeod
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumulation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.