Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Sathre is active.

Publication


Featured researches published by Roger Sathre.


Canadian Journal of Forest Research | 2007

Integrated carbon analysis of forest management practices and wood substitution.

Erik ErikssonE. Eriksson; Andrew R. GillespieA.R. Gillespie; Leif Gustavsson; Ola LangvallO. Langvall; Mats OlssonM. Olsson; Roger Sathre; Johan Stendahl

The complex fluxes between standing and harvested carbon stocks, and the linkage between harvested biomass and fossil fuel substitution, call for a holistic, system-wide analysis in a life-cycle perspective to evaluate the impacts of forest management and forest product use on carbon balances. We have analysed the net carbon emission under alternative forest management strategies and product uses, considering the carbon fluxes and stocks associated with tree biomass, soils, and forest products. Simulations were made using three Norway spruce (Picea abies (L.) Karst.) forest management regimes (traditional, intensive management, and intensive fertilization), three slash management practices (no removal, removal, and removal with stumps), two forest product uses (construction material and biofuel), and two reference fossil fuels (coal and natural gas). The greatest reduction of net carbon emission occurred when the forest was fertilized, slash and stumps were harvested, wood was used as construction materia...


Energy and Environmental Science | 2014

Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting

Roger Sathre; Corinne D. Scown; William R. Morrow; John C. Stevens; Ian D. Sharp; Joel W. Ager; Karl Walczak; Jeffery B. Greenblatt

Here we report a prospective life-cycle net energy assessment of a hypothetical large-scale photoelectrochemical (PEC) hydrogen production facility with energy output equivalent to 1 GW continuous annual average (1 GW HHV = 610 metric tons of H2 per day). We determine essential mass and energy flows based on fundamental principles, and use heuristic methods to conduct a preliminary engineering design of the facility. We then develop and apply a parametric model describing system-wide energy flows associated with the production, utilization, and decommissioning of the facility. Based on these flows, we calculate and interpret life-cycle net energy metrics for the facility. We find that under base-case conditions the energy payback time is 8.1 years, the energy return on energy invested (EROEI) is 1.7, and the life-cycle primary energy balance over the 40 years projected service life of the facility is +500 PJ. The most important model parameters affecting the net energy metrics are the solar-to-hydrogen (STH) conversion efficiency and the life span of the PEC cells; parameters associated with the balance of systems (BOS), including construction and operation of the liquid and gas handling infrastructure, play a much smaller role.


Energy and Environmental Science | 2013

Net primary energy balance of a solar-driven photoelectrochemical water-splitting device

Pei Zhai; Sophia Haussener; Joel W. Ager; Roger Sathre; Karl Walczak; Jeffery B. Greenblatt; Thomas E. McKone

A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m−2 (lower case), 2110 MJ m−2 (medium case), and 3440 MJ m−2 (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e.g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up.


European Journal of Forest Research | 2012

Climate change mitigation through increased wood use in the European construction sector—towards an integrated modelling framework

Ljusk Ola Eriksson; Leif Gustavsson; Riitta Hänninen; Maarit Kallio; Henna Lyhykäinen; Kim Pingoud; Johanna Pohjola; Roger Sathre; Birger Solberg; Jarle Svanaes; Lauri Valsta

Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008–2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2–0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing.


Environmental Research Letters | 2015

Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

Thomas P. Hendrickson; Olga Kavvada; Nihar Shah; Roger Sathre; Corinne D. Scown

Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23–45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6–56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.


International Journal of Sustainable Building Technology and Urban Development | 2012

Lifecycle primary energy analysis of conventional and passive houses

Ambrose Dodoo; Leif Gustavsson; Roger Sathre

In this study we analyse the primary energy implications of thermal envelope designs and construction systems, for a 4-storey apartment building, including the full lifecycle phases and the entire energy chains. We maintain the architectural design of the reference building, and alter the thermal properties of the envelope components and include heat recovery of ventilation air to achieve buildings with thermal properties similar to three existing passive houses in Sweden. We also vary the building frame material from the reference wood case to reinforced concrete, and vary the heat supply system between district heating and electric resistance heating. We follow the lifecycle of the buildings and analyse and compare their lifecycle primary energy use, considering the production, operation and end-of-life energy uses. The results show that the lifecycle primary energy use of a passive house building is substantially lower when it is heated with district heating instead of electricity. A passive house with...


Environmental Science & Technology | 2012

Long-term energy and climate implications of carbon capture and storage deployment strategies in the us coal-fired electricity fleet

Roger Sathre; Eric Masanet

To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.


Handbook of Recycling#R##N#State-of-the-art for Practitioners, Analysts, and Scientists | 2014

Recycling of lumber

Ambrose Dodoo; Leif Gustavsson; Roger Sathre

Wood from sustainably managed forests can play important roles both as material and as fuel in a transition to a low-carbon society. Wood is widely used as an energy source and as a physical and structural material in diverse applications, including furniture and joinery, pulp and paper, and construction material. There is large potential to improve resource efficiency and thereby reduce greenhouse gas (GHG) emissions through efficient management of post-use wood materials. This chapter explores post-use management of wood products from resource efficiency and climate perspectives. Primary energy and GHG balances are important metrics to understand the resource efficiency of climate change mitigation strategies involving post-use wood products. Primary energy use largely determines natural resource efficiency and steers the environmental impacts of material recovery and production. This chapter describes the mechanisms through which post-use management of recovered wood materials can affect primary energy use and GHG impacts of wood products. To further understand the implications of different post-use management options for wood products, we then explore several quantitative case-studies.


Archive | 2013

Time Dynamics and Radiative Forcing of Forest Bioenergy Systems

Roger Sathre; Leif Gustavsson; Sylvia Haus

In this chapter we explore the temporal dynamics of using forest bioenergy to mitigate climate change. We consider such issues as: growth dynamics of forests under different management regimes; the substitution effects of different bioenergy and biomaterial uses; temporary carbon storage in harvested biomass; the availability of different biomass fractions at different points of a wood product life cycle; and changes in carbon content of forest soils. We introduce the metric of radiative forcing, which quantifies the accumulating energy due to the global greenhouse effect, and we describe a method to estimate quantitatively and to compare the cumulative radiative forcing (CRF) of forest bioenergy systems and reference fossil energy systems. In three case studies, we describe the time dynamics and estimate the CRF profiles of various forest biomass systems.


Environmental Science & Technology | 2012

Comment on "material Nature versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements"

Roger Sathre; Ambrose Dodoo; Leif Gustavsson; Bruce Lippke; Gregg Marland; Eric Masanet; Birger Solberg; Frank Werner

MATERIAL NATURE VERSUS STRUCTURAL NURTURE: THE EMBODIED CARBON OF FUNDAMENTAL STRUCTURAL ELEMENTS Roger Sathre, Ambrose Dodoo, Leif Gustavsson, Bruce Lippke, Gregg Marland, Eric Masanet, Birger Solberg, and Frank Werner Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Collaboration


Dive into the Roger Sathre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Masanet

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Lundmark

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Kim Pingoud

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge