Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Schneiter is active.

Publication


Featured researches published by Roger Schneiter.


Nature Reviews Molecular Cell Biology | 2008

Lipid signalling in disease

Matthias P. Wymann; Roger Schneiter

Signalling lipids such as eicosanoids, phosphoinositides, sphingolipids and fatty acids control important cellular processes, including cell proliferation, apoptosis, metabolism and migration. Extracellular signals from cytokines, growth factors and nutrients control the activity of a key set of lipid-modifying enzymes: phospholipases, prostaglandin synthase, 5-lipoxygenase, phosphoinositide 3-kinase, sphingosine kinase and sphingomyelinase. These enzymes and their downstream targets constitute a complex lipid signalling network with multiple nodes of interaction and cross-regulation. Imbalances in this network contribute to the pathogenesis of human disease. Although the function of a particular signalling lipid is traditionally studied in isolation, this review attempts a more integrated overview of the key role of these signalling lipids in inflammation, cancer and metabolic disease, and discusses emerging strategies for therapeutic intervention.


Journal of Cell Science | 2011

Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae

Nicolas Jacquier; Vineet Choudhary; Muriel Mari; Alexandre Toulmay; Fulvio Reggiori; Roger Schneiter

Cells store metabolic energy in the form of neutral lipids that are deposited within lipid droplets (LDs). In this study, we examine the biogenesis of LDs and the transport of integral membrane proteins from the endoplasmic reticulum (ER) to newly formed LDs. In cells that lack LDs, otherwise LD-localized membrane proteins are homogenously distributed in the ER membrane. Under these conditions, transcriptional induction of a diacylglycerol acyltransferase that catalyzes the formation of the storage lipid triacylglycerol (TAG), Lro1, is sufficient to drive LD formation. Newly formed LDs originate from the ER membrane where they become decorated by marker proteins. Induction of LDs by expression of the second TAG-synthesizing integral membrane protein, Dga1, reveals that Dga1 itself moves from the ER membrane to concentrate on LDs. Photobleaching experiments (FRAP) indicate that relocation of membrane proteins from the ER to LDs is independent of temperature and energy, and thus not mediated by classical vesicular transport routes. LD-localized membrane proteins are homogenously distributed at the perimeter of LDs, they are free to move over the LD surface and can even relocate back into the ER, indicating that they are not restricted to specialized sites on LDs. These observations indicate that LDs are functionally connected to the ER membrane and that this connection allows the efficient partitioning of membrane proteins between the two compartments.


Molecular and Cellular Biology | 1996

A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex.

Roger Schneiter; Midori Hitomi; Andreas S. Ivessa; Evelyn-Verena Fasch; Sepp D. Kohlwein; A M Tartakoff

The conditional mRNA transport mutant of Saccharomyces cerevisiae, acc1-7-1 (mtr7-1), displays a unique alteration of the nuclear envelope. Unlike nucleoporin mutants and other RNA transport mutants, the intermembrane space expands, protuberances extend from the inner membrane into the intermembrane space, and vesicles accumulate in the intermembrane space. MTR7 is the same gene as ACC1, encoding acetyl coenzyme A (CoA) carboxylase (Acc1p), the rate-limiting enzyme of de novo fatty acid synthesis. Genetic and biochemical analyses of fatty acid synthesis mutants and acc1-7-1 indicate that the continued synthesis of malonyl-CoA, the enzymatic product of acetyl-CoA carboxylase, is required for an essential pathway which is independent from de novo synthesis of fatty acids. We provide evidence that synthesis of very-long-chain fatty acids (C26 atoms) is inhibited in acc1-7-1, suggesting that very-long-chain fatty acid synthesis is required to maintain a functional nuclear envelope.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control

Sumin Han; Museer A. Lone; Roger Schneiter; Amy Chang

Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the first committed step in sphingolipid synthesis, further supports a role for the Orm proteins in regulating sphingolipid synthesis. Phospholipid homeostasis is also affected in orm1Δ orm2Δ cells: the cells are inositol auxotrophs with impaired transcriptional regulation of genes encoding phospholipid biosynthesis enzymes. Strikingly, impaired growth of orm1Δ orm2Δ cells is associated with constitutive unfolded protein response, sensitivity to stress, and slow ER-to-Golgi transport. Inhibition of sphingolipid synthesis suppresses orm1Δ orm2Δ phenotypes, including ER stress, suggesting that disrupted sphingolipid homeostasis accounts for pleiotropic phenotypes. Thus, the yeast Orm proteins control membrane biogenesis by coordinating lipid homeostasis with protein quality control.


Molecular and Cellular Biology | 2005

The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

René Köffel; Rashi Tiwari; Roger Schneiter

ABSTRACT Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.


Molecular and Cellular Biology | 2002

The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation.

Michael E. Young; Tatiana S. Karpova; Britta Brügger; Darcy M. Moschenross; Georgeann K. Wang; Roger Schneiter; Felix T. Wieland; John A. Cooper

ABSTRACT We have discovered a novel cortical patch structure in Saccharomyces cerevisiae defined by a family of integral plasma membrane proteins, including Sur7p, Ynl194p, and Ydl222p. Sur7p-family patches localized as cortical patches that were immobile and stable. These patches were polarized to regions of the cell with a mature cell wall; they were absent from small buds and the tips of many medium-sized buds. These patches were distinct from other known cortical structures. Digestion of the cell wall caused Sur7p patches to disassemble, indicating that Sur7p requires cell wall-dependent extracellular interactions for its localization as patches. sur7Δ, ydl222Δ, and ynl194Δ mutants had reduced sporulation efficiencies. SUR7 was originally described as a multicopy suppressor of rvs167, whose product is an actin patch component. This suppression is probably mediated by sphingolipids, since deletion of SUR7, YDL222, and YNL194 altered the sphingolipid content of the yeast plasma membrane, and other SUR genes suppress rvs167 via effects on sphingolipid synthesis. In particular, the sphingoid base length and number of hydroxyl groups in inositolphosphorylceramides were altered in sur7Δ, ydl222Δ, and yne194Δ strains.


Journal of Biological Chemistry | 2006

Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.

Barbara Gaigg; Alexandre Toulmay; Roger Schneiter

The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid “rafts”) already in the ER, and a lack of raft association correlates with mistargeting of the protein to the vacuole, where it is degraded. We are analyzing the role of specific lipids in membrane domain formation and have previously shown that surface transport of Pma1p is independent of newly synthesized sterols but that sphingolipids with C26 very long chain fatty acid are crucial for raft association and surface transport of Pma1p (Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) J. Biol. Chem. 280, 22515-22522). We now describe a more detailed analysis of the function that sphingolipids play in this process. Using a yeast strain in which the essential function of sphingolipids is substituted by glycerophospholipids containing C26 very long chain fatty acids, we find that sphingolipids per se are dispensable for raft association and surface delivery of Pma1p but that the C26 fatty acid is crucial. We thus conclude that the essential function of sphingolipids for membrane domain formation and stable surface delivery of Pma1p is provided by the C26 fatty acid that forms part of the yeast ceramide.


Biochemical Journal | 2004

Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes.

Roger Schneiter; Britta Brügger; Clare M. Amann; Glenn D. Prestwich; Raquel F. Epand; Günther Zellnig; Felix T. Wieland; Richard M. Epand

Morphological analysis of a conditional yeast mutant in acetyl-CoA carboxylase acc1ts/mtr7, the rate-limiting enzyme of fatty acid synthesis, suggested that the synthesis of C26 VLCFAs (very-long-chain fatty acids) is important for maintaining the structure and function of the nuclear membrane. To characterize this C26-dependent pathway in more detail, we have now examined cells that are blocked in pathways that require C26. In yeast, ceramide synthesis and remodelling of GPI (glycosylphosphatidylinositol)-anchors are two pathways that incorporate C26 into lipids. Conditional mutants blocked in either ceramide synthesis or the synthesis of GPI anchors do not display the characteristic alterations of the nuclear envelope observed in acc1ts, indicating that the synthesis of another C26-containing lipid may be affected in acc1ts mutant cells. Lipid analysis of isolated nuclear membranes revealed the presence of a novel C26-substituted PI (phosphatidylinositol). This C26-PI accounts for approx. 1% of all the PI species, and is present in both the nuclear and the plasma membrane. Remarkably, this C26-PI is the only C26-containing glycerophospholipid that is detectable in wild-type yeast, and the C26-substitution is highly specific for the sn-1 position of the glycerol backbone. To characterize the biophysical properties of this lipid, it was chemically synthesized. In contrast to PIs with normal long-chain fatty acids (C16 or C18), the C26-PI greatly reduced the bilayer to hexagonal phase transition of liposomes composed of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE). The biophysical properties of this lipid are thus consistent with a possible role in stabilizing highly curved membrane domains.


Biochemical Journal | 2004

Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae

Nils J. Færgeman; Søren Feddersen; Janne K. Christiansen; Morten Larsen; Roger Schneiter; Christian Ungermann; Kudzai E. Mutenda; Peter Roepstorff; Jens Knudsen

In the present study, we show that depletion of acyl-CoA-binding protein, Acb1p, in yeast affects ceramide levels, protein trafficking, vacuole fusion and structure. Vacuoles in Acb1p-depleted cells are multi-lobed, contain significantly less of the SNAREs (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptors) Nyv1p, Vam3p and Vti1p, and are unable to fuse in vitro. Mass spectrometric analysis revealed a dramatic reduction in the content of ceramides in whole-cell lipids and in vacuoles isolated from Acb1p-depleted cells. Maturation of yeast aminopeptidase I and carboxypeptidase Y is slightly delayed in Acb1p-depleted cells, whereas the maturation of alkaline phosphatase and Gas1p is unaffected. The fact that Gas1p maturation is unaffected by Acb1p depletion, despite the lowered ceramide content in these cells, indicates that ceramide synthesis in yeast could be compartmentalized. We suggest that the reduced ceramide synthesis in Acb1p-depleted cells leads to severely altered vacuole morphology, perturbed vacuole assembly and strong inhibition of homotypic vacuole fusion.


Methods of Molecular Biology | 2006

Extraction of yeast lipids.

Roger Schneiter; Günther Daum

Quantitative extraction of lipids from the tissue or microorganism of choice is key to their subsequent analysis. In this chapter, we describe a simple and rapid protocol that relies on glass bead disruption in the presence of organic solvents to quantitatively extract lipids from yeast cells.

Collaboration


Dive into the Roger Schneiter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge