Roger W. Stich
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger W. Stich.
Journal of Parasitology | 2000
J. P. Dubey; William J. A. Saville; David S. Lindsay; Roger W. Stich; J. F. Stanek; C.A. Speer; Benjamin M. Rosenthal; C.J Njoku; O.C.H. Kwok; S. K. Shen; Stephen M. Reed
Sarcocystis neurona is the most important cause of a neurologic disease in horses, equine protozoal myeloencephalitis (EPM). The complete life cycle of S. neurona, including the description of sarcocysts and intermediate hosts, has not been completed until now. Opossums (Didelphis spp.) are definitive hosts, and horses and other mammals are aberrant hosts. In the present study, laboratory-raised domestic cats (Felis domesticus) were fed sporocysts from the intestine of a naturally infected opossum (Didelphis virginiana). Microscopic sarcocysts, with a maximum size of 700 × 50 µm, developed in the muscles of the cats. The DNA of bradyzoites released from sarcocysts was confirmed as S. neurona. Laboratory-raised opossums (D. virginiana) fed cat muscles containing the sarcocysts shed sporocysts in their feces. The sporocysts were ∼10–12 × 6.5–8.0 µm in size. Gamma interferon knockout mice fed sporocysts from experimentally infected opossums developed clinical sarcocystosis, and S. neurona was identified in their tissues using S. neurona-specific polyclonal rabbit serum. Two seronegative ponies fed sporocysts from an experimentally-infected opossum developed S. neurona-specific antibodies within 14 days.
Veterinary Parasitology | 2001
J. P. Dubey; William J. Saville; J. F. Stanek; David S. Lindsay; Benjamin M. Rosenthal; M.J Oglesbee; C.J Njoku; Roger W. Stich; O.C.H. Kwok; S.K Shen; A.N. Hamir; Stephen M. Reed
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses in the Americas and Sarcocystis neurona is the most common etiologic agent. The distribution of S. neurona infections follows the geographical distributions of its definitive hosts, opossums (Didelphis virginiana, Didelphis albiventris). Recently, cats and skunks were reported as experimental and armadillos as natural intermediate hosts of S. neurona. In the present report, raccoons (Procyon lotor) were identified as a natural intermediate host of S. neurona. Two laboratory-raised opossums were found to shed S. neurona-like sporocysts after ingesting tongues of naturally-infected raccoons. Interferon-gamma gene knockout (KO) mice fed raccoon-opossum-derived sporocysts developed neurologic signs. S. neurona was identified immunohistochemically in tissues of KO mice fed sporocysts and the parasite was isolated in cell cultures inoculated with infected KO mouse tissues. The DNA obtained from the tongue of a naturally-infected raccoon, brains of KO mice that had neurological signs, and from the organisms recovered in cell cultures inoculated with brains of neurologic KO mice, corresponded to that of S. neurona. Two raccoons fed mature S. neurona sarcocysts did not shed sporocysts in their feces, indicating raccoons are not likely to be its definitive host. Two raccoons fed sporocysts from opossum feces developed clinical illness and S. neurona-associated encephalomyelitis was found in raccoons killed 14 and 22 days after feeding sporocysts; schizonts and merozoites were seen in encephalitic lesions.
Veterinary Parasitology | 2001
William J. A. Saville; Roger W. Stich; Stephen M. Reed; C.J Njoku; M.J Oglesbee; A Wunschmann; D.L Grover; A.L Larew-Naugle; J. F. Stanek; D.E. Granstrom; J. P. Dubey
Neurologic disease in horses caused by Sarcocystis neurona is difficult to diagnose, treat, or prevent, due to the lack of knowledge about the pathogenesis of the disease. This in turn is confounded by the lack of a reliable equine model of equine protozoal myeloencephalitis (EPM). Epidemiologic studies have implicated stress as a risk factor for this disease, thus, the role of transport stress was evaluated for incorporation into an equine model for EPM. Sporocysts from feral opossums were bioassayed in interferon-gamma gene knockout (KO) mice to determine minimum number of viable S. neurona sporocysts in the inoculum. A minimum of 80,000 viable S. neurona sporocysts were fed to each of the nine horses. A total of 12 S. neurona antibody negative horses were divided into four groups (1-4). Three horses (group 1) were fed sporocysts on the day of arrival at the study site, three horses were fed sporocysts 14 days after acclimatization (group 2), three horses were given sporocysts and dexamethasone 14 days after acclimatization (group 3) and three horses were controls (group 4). All horses fed sporocysts in the study developed antibodies to S. neurona in serum and cerebrospinal fluid (CSF) and developed clinical signs of neurologic disease. The most severe clinical signs were in horses in group 1 subjected to transport stress. The least severe neurologic signs were in horses treated with dexamethasone (group 3). Clinical signs improved in four horses from two treatment groups by the time of euthanasia (group 1, day 44; group 3, day 47). Post-mortem examinations, and tissues that were collected for light microscopy, immunohistochemistry, tissue cultures, and bioassay in KO mice, revealed no direct evidence of S. neurona infection. However, there were lesions compatible with S. neurona infection in horses. The results of this investigation suggest that stress can play a role in the pathogenesis of EPM. There is also evidence to suggest that horses in nature may clear the organism routinely, which may explain the relatively high number of normal horses with CSF antibodies to S. neurona compared to the prevalence of EPM.
Veterinary Parasitology | 2008
Roger W. Stich; John J. Schaefer; William G. Bremer; Glen R. Needham; Sathaporn Jittapalapong
The ehrlichioses have been subject to increasing interest from veterinary and public health perspectives, but experimental studies of these diseases and their etiologic agents can be challenging. Ehrlichia canis, the primary etiologic agent of canine monocytic ehrlichiosis, is relatively well characterized and offers unique advantages and opportunities to study interactions between a monocytotropic pathogen and both its vertebrate and invertebrate hosts. Historically, advances in tick-borne disease control strategies have typically followed explication of tick-pathogen-vertebrate interactions, thus it is reasonable to expect novel, more sustainable approaches to control of these diseases as the transmission of their associated infections are investigated at the molecular through ecological levels. Better understanding of the interactions between E. canis and its canine and tick hosts would also elucidate similar interactions for other Ehrlichia species as well as the potential roles of canine sentinels, reservoirs and models of tick-borne zoonoses. This article summarizes natural exposure studies and experimental investigations of E. canis in the context of what is understood about biological vectors of tick-borne Anaplasmataceae.
Infection and Immunity | 2002
Ning Zhi; Norio Ohashi; Tomoko Tajima; Jason Mott; Roger W. Stich; Debra Grover; Sam R. Telford; Quan Lin; Yasuko Rikihisa
ABSTRACT Human granulocytic ehrlichiosis (HGE) is an emerging tick-borne zoonosis caused by a strain of Anaplasma phagocytophila called the HGE agent, an obligatory intracellular bacterium. The agent expresses immunodominant 44-kDa outer membrane proteins (P44s) encoded by a multigene family. The present study established an experimental process for transmission of the HGE agent from infected mice (a reservoir model) to nymphal Ixodes scapularis ticks (a biological vector) and subsequently to horses (a patient model) by the adult infected ticks. Overall, a total of 20 different p44 transcripts were detected in the mammals, ticks, and cell cultures. Among them, a transcript from a p44-18 gene was major at acute stage in mice and horses but minor in ticks. Both mRNA and protein produced from the p44-18 gene were detected in the HGE agent cultivated in HL-60 cells at 37°C, but their expression levels decreased in the organisms cultivated at 24°C, suggesting that temperature is one of the factors that influence the expression of members of the p44 multigene family. Several additional p44 transcripts that were not detected in the mammals at the acute stage of infection were detected in ticks. Phylogenetic analysis of the 20 different p44 transcripts revealed that the major transcripts found in mammals and ticks were distinct, suggesting a difference in surface properties between populations of the HGE agent in different host environments. The present study provides new information for understanding the role of the p44 multigene family in transmission of the HGE agent between mammals and ticks.
Infection and Immunity | 2002
Ahmet Unver; Yasuko Rikihisa; Roger W. Stich; Norio Ohashi; Suleyman Felek
ABSTRACT Sixteen of 22 omp-1 paralogs encoding 28-kDa-range immunodominant outer membrane proteins of Ehrlichia chaffeensis were transcribed in blood monocytes of dogs throughout a 56-day infection period. Only one paralog was transcribed by E. chaffeensis in three developmental stages of Amblyomma americanum ticks before or after E. chaffeensis transmission to naïve dogs.
Annals of the New York Academy of Sciences | 2006
Sathaporn Jittapalapong; Opart Rungphisutthipongse; Soichi Maruyama; John J. Schaefer; Roger W. Stich
Abstract: A rapidly increasing stray animal population in Bangkok has caused concern regarding transmission of vector‐borne and zoonotic diseases. The purpose of this study was to determine if stray animals in Bangkok are a potential reservoir of Hepatozoon, a genus of tick‐borne parasites that has received little attention in Thailand. Blood samples were collected from stray companion animals near monasteries in 42 Bangkok metropolitan districts. Both dogs and cats were sampled from 26 districts, dogs alone from 4 districts and cats alone from 12 districts. Samples were collected from a total of 308 dogs and 300 cats. Light microscopy and an 18 S rRNA gene‐based PCR assay were used to test these samples for evidence of Hepatozoon infection. Gamonts were observed in blood smears for 2.6% of dogs and 0.7% of cats by microscopy. The PCR assay detected Hepatozoon in buffy coats from 11.4% of dogs and 32.3% of cats tested. The prevalence of infection was the same between male and female dogs or cats, and PCR‐positive dogs and cats were found in 36.6% and 36.8% of the districts surveyed, respectively. There was an association between the percentages of PCR‐positive dogs and cats in districts where both host species were sampled. Sequences of representative amplicons were closest to those reported for H. canis. These results represent the first molecular confirmation that H. canis is indigenous to Thailand. The unexpectedly high prevalence of Hepatozoon among stray cats indicates that their role in the epizootiology of hepatozoonosis should be investigated.
Infection and Immunity | 2001
Ahmet Unver; Norio Ohashi; Tomoko Tajima; Roger W. Stich; Debra Grover; Yasuko Rikihisa
ABSTRACT Ehrlichia canis, an obligatory intracellular bacterium of monocytes and macrophages, causes canine monocytic ehrlichiosis. E. canisimmunodominant 30-kDa major outer membrane proteins are encoded by a polymorphic multigene family consisting of more than 20 paralogs. In the present study, we analyzed the mRNA expression of 14 paralogs in experimentally infected dogs andRhipicephalussanguineus ticks by reverse transcription-PCR using gene-specific primers followed by Southern blotting. Eleven out of 14 paralogs in E.canis were transcribed in increasing numbers and transcription levels, while the mRNA expression of the 3 remaining paralogs was not detected in blood monocytes of infected dogs during the 56-day postinoculation period. Three different groups ofR. sanguineus ticks (adult males and females and nymphs) were separately infected with E.canis by feeding on the infected dogs. In these pools of acquisition-fed ticks as well as in the transmission-fed adult ticks, the transcript from only one paralog was detected, suggesting the predominant transcription of that paralog or the suppression of the remaining paralogs in ticks. Expression of the same paralog was higher whereas expression of the remaining paralogs was lower inE. canis cultivated in dog monocyte cell line DH82 at 25°C than in E. caniscultivated at 37°C. Analysis of differential expression ofp30 multigenes in dogs, ticks, or monocyte cell cultures would help in understanding the role of these gene products in pathogenesis and E. canis transmission as well as in designing a rational vaccine candidate immunogenic against canine ehrlichiosis.
Journal of Clinical Microbiology | 2002
Roger W. Stich; Yasuko Rikihisa; S. A. Ewing; Glen R. Needham; Debra Grover; Sathaporn Jittapalapong
ABSTRACT Detection of vector-borne pathogens is necessary for investigation of their association with vertebrate and invertebrate hosts. The ability to detect Ehrlichia spp. within individual experimentally infected ticks would be valuable for studies to evaluate the relative competence of different vector species and transmission scenarios. The purpose of this study was to develop a sensitive PCR assay based on oligonucleotide sequences from the unique Ehrlichia canis gene, p30, to facilitate studies that require monitoring this pathogen in canine and tick hosts during experimental transmission. Homologous sequences for Ehrlichia chaffeensis p28 were compared to sequences of primers derived from a sequence conserved among E. canis isolates. Criteria for primer selection included annealing scores, identity of the primers to homologous E. chaffeensis sequences, and the availability of similarly optimal primers that were nested within the target template sequence. The p30-based assay was at least 100-fold more sensitive than a previously reported nested 16S ribosomal DNA (rDNA)-based assay and did not amplify the 200-bp target amplicon from E. chaffeensis, the human granulocytic ehrlichiosis agent, or Ehrlichia muris DNA. The assay was used to detect E. canis in canine carrier blood and in experimentally infected Rhipicephalus sanguineus ticks. Optimized procedures for preparing tissues from these hosts for PCR assay are described. Our results indicated that this p30-based PCR assay will be useful for experimental investigations, that it has potential as a routine test, and that this approach to PCR assay design may be applicable to other pathogens that occur at low levels in affected hosts.
Journal of Clinical Microbiology | 2005
Alifiya S. Motiwala; Megan Strother; Natalie Theus; Roger W. Stich; Beverly Byrum; William P. Shulaw; Vivek Kapur; Srinand Sreevatsan
ABSTRACT A liquid culture followed by molecular confirmation was evaluated for potential to improve sensitivity and reduce time to diagnosis of Mycobacterium avium subsp. paratuberculosis infection. Fecal samples from 240 animals from Ohio farms were assessed for presence of M. avium subsp. paratuberculosis using four different protocols: (i) sedimentation processing followed by inoculation on Herrolds Egg Yolk media (HEYM) slants (monitored biweekly up to 16 weeks), (ii) double centrifugation processing followed by inoculation on HEYM slants (monitored biweekly up to 16 weeks), (iii) liquid-solid double culture method using modified 7H9 broth (8 weeks) followed by subculture on HEYM slants (monitored up to 8 weeks), and (iv) liquid culture using modified 7H9 broth (8 weeks) followed by molecular assays for the presence of two M. avium subsp. paratuberculosis-specific targets. The number of positive samples detected by each protocol was 37, 53, 65, and 76, respectively. Twenty-seven samples were positive by all four methods. Based on samples positive by at least one method (n = 81), the sensitivities for sedimentation processing, double centrifugation processing, liquid-solid double culture, and liquid culture followed by molecular confirmation were 46%, 65%, 80%, and 94%, respectively. Fingerprinting of the positive samples using two polymorphic (G and GGT) short sequence repeat regions identified varying levels of within-farm and between-farm diversity. Our data indicate that liquid culture followed by molecular confirmation can significantly improve sensitivity and reduce time-to-diagnosis (from 16 to 8 weeks) of M. avium subsp. paratuberculosis infection and can also be efficiently employed for the systematic differentiation of M. avium subsp. paratuberculosis strains to understand the epidemiology of Johnes disease.