Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roghayeh Abedi Karjiban is active.

Publication


Featured researches published by Roghayeh Abedi Karjiban.


Colloids and Surfaces B: Biointerfaces | 2013

Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment

Siti Hajar Musa; Mahiran Basri; Hamid Reza Fard Masoumi; Roghayeh Abedi Karjiban; Emilia Abd Malek; Hamidon Basri; Ahmad Fuad Shamsuddin

Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment.


European Journal of Pharmaceutical Sciences | 2015

Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging.

Cheng Loong Ngan; Mahiran Basri; Minaketan Tripathy; Roghayeh Abedi Karjiban; Emilia Abdulmalek

Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.


International Journal of Molecular Sciences | 2012

Formulation Optimization of a Palm-Based Nanoemulsion System Containing Levodopa

Syafinaz Zainol; Mahiran Basri; Hamidon Basri; Ahmad Fuad Shamsuddin; Siti Salwa Abdul-Gani; Roghayeh Abedi Karjiban; Emilia Abdulmalek

Response surface methodology (RSM) was utilized to investigate the influence of the main emulsion composition; mixture of palm and medium-chain triglyceride (MCT) oil (6%–12% w/w), lecithin (1%–3% w/w), and Cremophor EL (0.5%–1.5% w/w) as well as the preparation method; addition rate (2–20 mL/min), on the physicochemical properties of palm-based nanoemulsions. The response variables were the three main emulsion properties; particle size, zeta potential and polydispersity index. Optimization of the four independent variables was carried out to obtain an optimum level palm-based nanoemulsion with desirable characteristics. The response surface analysis showed that the variation in the three responses could be depicted as a quadratic function of the main composition of the emulsion and the preparation method. The experimental data could be fitted sufficiently well into a second-order polynomial model. The optimized formulation was stable for six months at 4 °C.


Protein Journal | 2009

Molecular dynamics study of the structure, flexibility and dynamics of thermostable l1 lipase at high temperatures.

Roghayeh Abedi Karjiban; Mohd Basyaruddin Abdul Rahman; Mahiran Basri; Abu Bakar Salleh; Donald J. Jacobs; Habibah A. Wahab

Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn2+-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn2+-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme.


International Journal of Molecular Sciences | 2012

Molecular Dynamics Simulation of Palmitate Ester Self-Assembly with Diclofenac

Roghayeh Abedi Karjiban; Mahiran Basri; Mohd Basyaruddin Abdul Rahman; Abu Bakar Salleh

Palm oil-based esters (POEs) are unsaturated and non-ionic esters with a great potential to act as chemical penetration enhancers and drug carriers for transdermal drug nano-delivery. A ratio of palmitate ester and nonionic Tween80 with and without diclofenac acid was chosen from an experimentally determined phase diagram. Molecular dynamics simulations were performed for selected compositions over a period of 15 ns. Both micelles showed a prolate-like shape, while adding the drug produced a more compact micellar structure. Our results proposed that the drug could behave as a co-surfactant in our simulated model.


Ultrasonics Sonochemistry | 2016

Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability

Suk Fei Tan; Hamid Reza Fard Masoumi; Roghayeh Abedi Karjiban; Johnson Stanslas; Brian Kirby; Mahiran Basri; Hamidon Basri

Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy.


Journal of Chemistry | 2013

A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution

Roghayeh Abedi Karjiban; Nurul Syahidah Shaari; Uma Villashini Gunasakaran; Mahiran Basri

The structural and dynamics properties of the bilayer comprising 128 molecules of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and distearoylphosphatidylcholine (DSPC) in water were investigated using a coarse-grained molecular dynamics (CG-MD) simulation technique. The model mixture system was simulated at 298 K under semi-isotropic pressure conditions. The aggregation was initiated from the random configurations followed by the formation of a bilayer over a period of 500 ns. The calculated values of the area per lipid, thickness, and lateral diffusion for the mixed model were different from when a single lipid was used. Our results confirmed that the chain length of the lipid molecules strongly affects the phospholipid bilayer’s physical properties.


The Scientific World Journal | 2014

Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

Cheng Loong Ngan; Mahiran Basri; Minaketan Tripathy; Roghayeh Abedi Karjiban; Emilia Abdulmalek

Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.


International Journal of Nanomedicine | 2014

Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene

Cheng L oong Ngan; Mahiran Basri; Fui F ang Lye; Hamid Reza Fard Masoumi; Minaketan Tripathy; Roghayeh Abedi Karjiban; Emilia Abdulmalek

This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box–Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000–5,000 rpm), sonication amplitude (20%–60%), and sonication time (30–150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, −52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box–Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, −55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region.


International Journal of Nanomedicine | 2014

Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac

Malahat Rezaee; Mahiran Basri; Raja Noor Zaliha Raja Abdul Rahman; Abu Bakar Salleh; Naz Chaibakhsh; Roghayeh Abedi Karjiban

Response surface methodology was employed to study the effect of formulation composition variables, water content (60%–80%, w/w) and oil and surfactant (O/S) ratio (0.17–1.33), as well as high-shear emulsification conditions, mixing rate (300–3,000 rpm) and mixing time (5–30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R2) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.

Collaboration


Dive into the Roghayeh Abedi Karjiban's collaboration.

Top Co-Authors

Avatar

Mahiran Basri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hamidon Basri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge