Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roghayeh Imani is active.

Publication


Featured researches published by Roghayeh Imani.


Small | 2017

Multifunctional Gadolinium‐Doped Mesoporous TiO2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment

Roghayeh Imani; Ralf Dillert; Detlef W. Bahnemann; Meysam Pazoki; Tomaž Apih; Veno Kononenko; Neža Repar; Veronika Kralj-Iglič; Gerrit Boschloo; Damjana Drobne; Tomas Edvinsson; Aleš Iglič

Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.


Photochemical and Photobiological Sciences | 2015

Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells

Roghayeh Imani; Peter Veranič; Aleš Iglič; Mateja Erdani Kreft; Meysam Pazoki; Samo Hudoklin

The differentiation of urothelial cells results in normal terminally differentiated cells or by alternative pathways in low-grade or high-grade urothelial carcinomas. Treatments with traditional surgical and chemotherapeutical approaches are still inadequate and expensive, as bladder tumours are generally highly recurrent. In such situations, alternative approaches, using irradiation of the cells and nanoparticles, are promising. The ways in which urothelial cells, at different differentiation levels, respond to UV-irradiation (photolytic treatment) or to the combination of UV-irradiation and nanoparticles (photocatalytic treatment), are unknown. Here we tested cytotoxicity of UV-irradiation on (i) normal porcine urothelial cells (NPU), (ii) human low-grade urothelial cancer cells (RT4), and (iii) human high-grade urothelial cancer cells (T24). The results have shown that 1 minute of UV-irradiation is enough to kill 90% of the cells in NPU and RT4 cultures, as determined by the live/dead viability assay. On the other hand, the majority of T24 cells survived 1 minute of UV-irradiation. Moreover, even a prolonged UV-irradiation for 30 minutes killed <50% of T24 cells. When T24 cells were pre-supplemented with mesoporous TiO2 microbeads and then UV-irradiated, the viability of these high-grade urothelial cancer cells was reduced to <10%, which points to the highly efficient cytotoxic effects of TiO2 photocatalysis. Using electron microscopy, we confirmed that the mesoporous TiO2 microbeads were internalized into T24 cells, and that the cells ultrastructure was heavily compromised after UV-irradiation. In conclusion, our results show major differences in the sensitivity to UV-irradiation among the urothelial cells with respect to cell differentiation. To achieve an increased cytotoxicity of urothelial cancer cells, the photocatalytic approach is recommended.


Croatian Medical Journal | 2012

Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

Roghayeh Imani; Doron Kabaso; Erdani Kreft M; Ekaterina Gongadze; Samo Penič; Kristina Eleršič; Kos A; Peter Veranič; Robert Zorec; Aleš Iglič

Aim To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular titanium dioxide (TiO2) nanostructures. Methods Using anodization method, TiO2 surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Results Large diameter TiO2 nanotubes exhibited a significantly smaller contact area of adhesion (P < 0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO2 nanotubular surface, thus explaining the small contact area. Conclusion The reduction in the cell contact area in the case of large diameter TiO2 nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.


Scientific Reports | 2015

On/off-switchable anti-neoplastic nanoarchitecture.

Hirak K. Patra; Roghayeh Imani; Jaganmohan Reddy Jangamreddy; Meysam Pazoki; Aleš Iglič; Anthony Turner; Ashutosh Tiwari

Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the ‘death gate’, thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells.


Nanomaterials and Nanotechnology | 2014

Fabrication of Microfibre-nanowire Junction Arrays of ZnO/SnO2 Composite by the Carbothermal Evaporation Method

Roghayeh Imani; Meysam Pazoki; Gerrit Boschloo; Aleš Iglič

A cotton-like ZnO/SnO2 nanocomposite was grown by the carbothermal evaporation of a mixture of ZnO and SnO2 powders at 1100°C by the vapour-liquid-solid process, in which the Sn particles produced by the reduction of SnO2 act as the catalyst. Field-emission scanning electron microscope images suggest that the composites are made of microfibre-nanowire junction arrays. The structure is formed due to the fast growth of the ZnO microfibre and the subsequent epitaxial radial growth of the ZnO nanowires with Sn particles at the tips. The photovoltaic performance of the ZnO/SnO2 nanocomposite sensitized with a D35-cpdt dye was investigated. A dye-sensitized solar cell (DSSC) with a ZnO/SnO2 nanocomposite photoanode based on a cobalt electrolyte achieved a solar-to-electricity conversion efficiency of ~0.34% with a short circuit current (JSC) of 0.66 mA/cm2, an open circuit voltage (VOC) of 870 mV, and a fill factor (FF) of 59. The results show the potential of this one dimensional structure in cobalt electrolyte-based DSSCs; the further optimization which is needed to achieve higher efficiencies is also discussed.


Journal of Materials Chemistry | 2017

Electronic structure of organic–inorganic lanthanide iodide perovskite solar cell materials

Meysam Pazoki; A. Röckert; Matthew J. Wolf; Roghayeh Imani; Tomas Edvinsson; Jolla Kullgren

The emergence of highly efficient lead halide perovskite solar cell materials makes the exploration and engineering of new lead free compounds very interesting both from a fundamental perspective as well as for potential use as new materials in solar cell devices. Herein we present the electronic structure of several lanthanide (La) based materials in the metalorganic halide perovskite family not explored before. Our estimated bandgaps for the lanthanide (Eu, Dy, Tm, Yb) perovskite compounds are in the range of 2.0–3.2 eV showing the possibility for implementation as photo-absorbers in tandem solar cell configurations or charge separating materials. We have estimated the typical effective masses of the electrons and holes for MALaI3 (La= Eu, Dy, Tm, Yb) to be in the range of 0.3–0.5 and 0.97–4.0 units of the free electron mass, respectively. We have shown that the localized f-electrons within our DFT+U approach, make the dominant electronic contribution to the states at the top of the valence band and thus have a strong impact on the photo-physical properties of the lanthanide perovskites. Therefore, the main valence to conduction band electronic transition for MAEuI3 is based on inner shell f-electron localized states within a periodic framework of perovskite crystal by which the optical absorption onset would be rather inert with respect to quantum confinement effects. The very similar crystal structure and lattice constant of the lanthanide perovskites to the widely studied CH3NH3PbI3 perovskite, are prominent advantages for implementation of these compounds in tandem or charge selective contacts in PV applications together with lead iodide perovskite devices.


ACS Nano | 2018

Dedopingof Lead Halide Perovskites IncorporatingMonovalent Cations

Mojtaba Abdi-Jalebi; Meysam Pazoki; Bertrand Philippe; M. Ibrahim Dar; Mejd Alsari; Aditya Sadhanala; Giorgio Divitini; Roghayeh Imani; Samuele Lilliu; Jolla Kullgren; Håkan Rensmo; Michael Grätzel; Richard H. Friend

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.


Archive | 2018

Research data supporting "Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations"

Mojtaba Abdi Jalebi; Meysam Pazoki; Bertrand Philippe; M. Ibrahim Dar; Mejd Alsari; Aditya Sadhanala; Giorgio Divitini; Roghayeh Imani; Samuele Lilliu; Jolla Kullgren; Håkan Rensmo; Michael Grätzel; Richard Henry Friend

Raw data files pertaining to the materials characterization, DFT calculations and solar cell measurements.


Nanoscale | 2015

Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices

Roghayeh Imani; Meysam Pazoki; Ashutosh Tiwari; Gerrit Boschloo; Anthony Turner; Veronika Kralj-Iglič; Aleš Iglič


Electrochemistry Communications | 2014

Electrochemical detection of DNA damage through visible-light-induced ROS using mesoporous TiO2 microbeads

Roghayeh Imani; Aleš Iglič; Anthony Turner; Ashutosh Tiwari

Collaboration


Dive into the Roghayeh Imani's collaboration.

Top Co-Authors

Avatar

Aleš Iglič

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge