Rohan E. Louis
Physical Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rohan E. Louis.
Journal of Geophysical Research | 2009
Nandita Srivastava; Shibu K. Mathew; Rohan E. Louis; Thomas Wiegelmann
[1] The superstorm of 20 November 2003 was associated with a high-speed coronal mass ejection (CME) which originated in the NOAA AR 10501 on 18 November. This coronal mass ejection had severe terrestrial consequences leading to a geomagnetic storm with Dst index of -472 nT, the strongest of the current solar cycle. In this paper, we attempt to understand the factors that led to the coronal mass ejection on 18 November. We have also studied the evolution of the photospheric magnetic field of NOAA AR 10501, the source region of this coronal mass ejection. For this purpose, the Michelson Doppler Imager line-of-sight magnetograms and vector magnetograms from Solar Flare Telescope, Mitaka, obtained during 17-19 November 2003 were analyzed. In particular, quantitative estimates of the temporal variation in magnetic flux, energy, and magnetic field gradient were estimated for the source active region. The evolution of these quantities was studied for the 3-day period with an objective to understand the preflare configuration leading up to the moderate flare which was associated with the geoeffective coronal mass ejection. We also examined the chromospheric images recorded in H α from Udaipur Solar Observatory to compare the flare location with regions of different magnetic field and energy. Our observations provide evidence that the flare associated with the CME occurred at a location marked by high magnetic field gradient which led to release of free energy stored in the active region.
The Astrophysical Journal | 2009
Rohan E. Louis; Luis R. Bellot Rubio; Shibu K. Mathew; P. Venkatakrishnan
We report the discovery of supersonic downflows in a sunspot light bridge using measurements taken with the spectropolarimeter onboard the Hinode satellite. The downflows occur in small patches close to regions where the vector magnetic field changes orientation rapidly, and are associated with anomalous circular polarization profiles. An inversion of the observed Stokes spectra reveals velocities of up to 10 km s–1, making them the strongest photospheric flows ever measured in light bridges. Some (but not all) of the downflowing patches are cospatial and cotemporal with brightness enhancements in chromospheric Ca II H filtergrams. We suggest that these flows are due to magnetic reconnection in the upper photosphere/lower chromosphere, although other mechanisms cannot be ruled out.
Astronomy and Astrophysics | 2014
Rohan E. Louis; Christian Beck; Kiyoshi Ichimoto
High-resolution broadband filtergrams of active region NOAA 11271 in Ca ii H and G band were obtained with the Solar Optical Telescope on board Hinode to identify the physical driver responsible for the dynamic and small-scale chromospheric jets above a sunspot light bridge. We identified the jets in the Ca images using a semi-automatic routine. The chromospheric jets consist of a bright, triangular-shaped blob that lies on the light bridge, while the apex of this blob extends into a spike-like structure that is bright against the dark umbral background. Most of the jets have apparent lengths of less than 1000 km and about 30% of them have lengths between 1000-1600 km. They are oriented within +/-35 deg. to the normal of the light bridge axis. Many of them are clustered near the central part within a 2 arcsec area. The jets are seen to move rapidly along the light bridge and most of them cannot be identified in successive images taken with a 2 min cadence. The jets are primarily located on one side of the light bridge and are directed into the umbral core. The Stokes profiles at or close to the location of the blobs on the LB exhibit both a significant net circular polarization and multiple components, including opposite-polarity lobes. The magnetic field diverges from the light bridge towards the umbral cores that it separates. In the photosphere there is a predominantly uni-directional flow with speeds of 100-150 m/s along the light bridge which is interrupted by a patch of weak motions that also moves along the light bridge. The dynamic short-lived jets above the LB seem to be guided by the magnetic field lines. Reconnection events are a likely trigger for such phenomenon since they occur at locations where the magnetic field changes orientation sharply. We find no clear relation between the jets and the photospheric flow pattern.
The Astrophysical Journal | 2012
Rohan E. Louis; B. Ravindra; Shibu K. Mathew; Luis R. Bellot Rubio; A. Raja Bayanna; P. Venkatakrishnan
We employ high-resolution filtergrams and polarimetric measurements from Hinode to follow the evolution of a sunspot for eight days starting on 2007 June 28. The imaging data were corrected for intensity gradients, projection effects, and instrumental stray light prior to the analysis. The observations show the formation of a light bridge at one corner of the sunspot by a slow intrusion of neighboring penumbral filaments. This divided the umbra into two individual umbral cores. During the light bridge formation, there was a steep increase in its intensity from 0.28 to 0.7 I QS in nearly 4 hr, followed by a gradual increase to quiet-Sun (QS) values in 13 hr. This increase in intensity was accompanied by a large reduction in the field strength from 1800 G to 300 G. The smaller umbral core gradually broke away from the parent sunspot nearly two days after the formation of the light bridge, rendering the parent spot without a penumbra at the location of fragmentation. The penumbra in the fragment disappeared first within 34 hr, followed by the fragment whose area decayed exponentially with a time constant of 22 hr. In comparison, the parent sunspot area followed a linear decay rate of 0.94 Mm2 hr–1. The depleted penumbra in the parent sunspot regenerated when the inclination of the magnetic field at the penumbra-QS boundary became within 40° from being completely horizontal and this occurred near the end of the fragments lifetime. After the disappearance of the fragment, another light bridge formed in the parent which had similar properties as the fragmenting one, but did not divide the sunspot. The significant weakening in field strength in the light bridge along with the presence of granulation is suggestive of strong convection in the sunspot, which might have triggered the expulsion and fragmentation of the smaller spot. Although the presence of QS photospheric conditions in sunspot umbrae could be a necessary condition for fragmentation, it is not a sufficient one.
The Astrophysical Journal | 2012
Rohan E. Louis; Shibu K. Mathew; Luis R. Bellot Rubio; Kiyoshi Ichimoto; B. Ravindra; A. Raja Bayanna
High resolution blue continuum filtergrams from Hinode are employed to study the umbral fine structure of a regular unipolar sunspot. The removal of scattered light from the images increases the rms contrast by a factor of 1.45 on average. Improvement in image contrast renders identification of short filamentary structures resembling penumbrae that are well separated from the umbra-penumbra boundary and comprise bright filaments/grains flanking dark filaments. Such fine structures were recently detected from ground based telescopes and have now been observed with Hinode. A multi-level tracking algorithm was used to identify umbral dots in both the uncorrected and corrected images and to track them in time. The distribution of the values describing the photometric and geometric properties of umbral dots are more easily affected by the presence of stray light while it is less severe in the case of kinematic properties. Statistically, umbral dots exhibit a peak intensity, effective diameter, lifetime, horizontal speed and a trajectory length of 0.29 I_QS, 272 km, 8.4 min, 0.45 km/s and 221 km respectively. The 2 hr 20 min time sequence depicts several locations where umbral dots tend to appear and disappear repeatedly with various time intervals. The correction for scattered light in the Hinode filtergrams facilitates photometry of umbral fine structure which can be related to results obtained from larger telescopes and numerical simulations.
Solar Physics | 2015
Rohan E. Louis; Bernhard Kliem; B. Ravindra; Georgios Chintzoglou
A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (≈40%
The Astrophysical Journal | 2014
C. Beck; Debi Prasad Choudhary; R. Rezaei; Rohan E. Louis
{\approx}\,40~\%
The Astrophysical Journal | 2011
Rohan E. Louis; Luis R. Bellot Rubio; Shibu K. Mathew; P. Venkatakrishnan
). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.
Astronomy and Astrophysics | 2014
Rohan E. Louis; Klaus G. Puschmann; Bernhard Kliem; Horst Balthasar; Carsten J. Denker
We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.
Astronomy and Astrophysics | 2013
Rohan E. Louis; Shibu K. Mathew; Klaus G. Puschmann; Christian Beck; Horst Balthasar
High-resolution spectropolarimetric observations of three sunspots taken with Hinode demonstrate the existence of supersonic downflows at or close to the umbra-penumbra boundary which have not been reported before. These downflows are confined to large patches, usually encompassing bright penumbral filaments, and have lifetimes of more than 14 hr. The presence of strong downflows in the center-side penumbra near the umbra rules out an association with the Evershed flow. Chromospheric filtergrams acquired close to the time of the spectropolarimetric measurements show large, strong, and long-lived brightenings in the neighborhood of the downflows. The photospheric intensity also exhibits persistent brightenings comparable to the quiet Sun. Interestingly, the orientation of the penumbral filaments at the site of the downflows is similar to that resulting from the reconnection process described by Ryutova et al. The existence of such downflows in the inner penumbra represents a challenge for numerical models of sunspots because they have to explain them in terms of physical processes likely affecting the chromosphere.