Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohini Chopra-Dewasthaly is active.

Publication


Featured researches published by Rohini Chopra-Dewasthaly.


Molecular Microbiology | 2008

Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation

Rohini Chopra-Dewasthaly; Christine Citti; Michelle Glew; Martina Zimmermann; Renate Rosengarten; Wolfgang Jechlinger

Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host–pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site‐specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon‐based vector. Inactivation of xer1 abolished further Vpma switching and the ‘phase‐locked’ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild‐type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ‘difficult‐to‐manipulate’ mycoplasmas.


International Journal of Medical Microbiology | 2014

In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model

Shivanand Hegde; Shrilakshmi Hegde; Joachim Spergser; René Brunthaler; Renate Rosengarten; Rohini Chopra-Dewasthaly

Generally regarded as extracellular pathogens, molecular mechanisms of mycoplasma persistence, chronicity and disease spread are largely unknown. Mycoplasma agalactiae, an economically important pathogen of small ruminants, causes chronic infections that are difficult to eradicate. Animals continue to shed the agent for several months and even years after the initial infection, in spite of long antibiotic treatment. However, little is known about the strategies that M. agalactiae employs to survive and spread within an immunocompetent host to cause chronic disease. Here, we demonstrate for the first time its ability to invade cultured human (HeLa) and ruminant (BEND and BLF) host cells. Presence of intracellular mycoplasmas is clearly substantiated using differential immunofluorescence technique and quantitative gentamicin invasion assays. Internalized M. agalactiae could survive and exit the cells in a viable state to repopulate the extracellular environment after complete removal of extracellular bacteria with gentamicin. Furthermore, an experimental sheep intramammary infection was carried out to evaluate its systemic spread to organs and host niches distant from the site of initial infection. Positive results obtained via PCR, culture and immunohistochemistry, especially the latter depicting the presence of M. agalactiae in the cytoplasm of mammary duct epithelium and macrophages, clearly provide the first formal proof of M. agalactiaes capability to translocate across the mammary epithelium and systemically disseminate to distant inner organs. Altogether, the findings of these in vitro and in vivo studies indicate that M. agalactiae is capable of entering host cells and this might be the strategy that it employs at a population level to ward off the host immune response and antibiotic action, and to disseminate to new and safer niches to later egress and once again proliferate upon the return of favorable conditions to cause persistent chronic infections.


Fems Yeast Research | 2009

Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation

Rekha Puria; M. Amin-ul Mannan; Rohini Chopra-Dewasthaly; K. Ganesan

Stress tolerance of yeast Saccharomyces cerevisiae during ethanolic fermentation is poorly understood due to the lack of genetic screens and conventional plate assays for studying this phenotype. We screened a genomic expression library of yeast to identify gene(s) that, upon overexpression, would prolong the survival of yeast cells during fermentation, with the view to understand the stress response better and to use the identified gene(s) in strain improvement. The yeast RPI1 (Ras-cAMP pathway inhibitor 1) gene was identified in such a screen performed at 38 degrees C; introducing an additional copy of RPI1 with its native promoter helped the cells to retain their viability by over 50-fold better than the wild type (WT) parent strain, after 36 h of fermentation at 38 degrees C. Disruption of RPI1 resulted in a drastic reduction in viability during fermentation, but not during normal growth, further confirming the role of this gene in fermentation stress tolerance. This gene seems to improve viability by fortifying the yeast cell wall, because RPI1 overexpression strain is highly resistant to cell lytic enzyme zymolyase, compared with the WT strain. As the RPI1 overexpression strain substantially retains cell viability at the end of fermentation, the cells can be reused in the subsequent round of fermentation, which is likely to facilitate economical production of ethanol.


PLOS ONE | 2015

Disruption of the pdhB Pyruvate Dehydrogenase Gene Affects Colony Morphology, In Vitro Growth and Cell Invasiveness of Mycoplasma agalactiae

Shivanand Hegde; Renate Rosengarten; Rohini Chopra-Dewasthaly

The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae.


PLOS ONE | 2017

Comprehensive RNA-Seq Profiling to Evaluate the Sheep Mammary Gland Transcriptome in Response to Experimental Mycoplasma agalactiae Infection.

Rohini Chopra-Dewasthaly; Melanie Korb; René Brunthaler; Reinhard Ertl

Mycoplasma agalactiae is a worldwide serious pathogen of small ruminants that usually spreads through the mammary route causing acute to subacute mastitis progressing to chronic persistent disease that is hard to eradicate. Knowledge of mechanisms of its pathogenesis and persistence in the mammary gland are still insufficient, especially the host-pathogen interplay that enables it to reside in a chronic subclinical state. This study reports transcriptome profiling of mammary tissue from udders of sheep experimentally infected with M. agalactiae type strain PG2 in comparison with uninfected control animals using Illumina RNA-sequencing (RNA-Seq). Several differentially expressed genes (DEGs) were observed in the infected udders and RT-qPCR analyses of selected DEGs showed their expression profiles to be in agreement with results from RNA-Seq. Gene Ontology (GO) analysis revealed majority of the DEGs to be associated with mycoplasma defense responses that are directly or indirectly involved in host innate and adaptive immune responses. Similar RNA-Seq analyses were also performed with spleen cells of the same sheep to know the specific systemic transcriptome responses. Spleen cells exhibited a comparatively lower number of DEGs suggesting a less prominent host response in this organ. To our knowledge this is the first study that describes host transcriptomics of M. agalactiae infection and the related immune-inflammatory responses. The data provides useful information to further dissect the molecular genetic mechanisms underlying mycoplasma mastitis, which is a prerequisite for designing effective intervention strategies.


PLOS Pathogens | 2017

Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host

Rohini Chopra-Dewasthaly; Joachim Spergser; Martina Zimmermann; Christine Citti; Wolfgang Jechlinger; Renate Rosengarten

Despite very small genomes, mycoplasmas retain large multigene families encoding variable antigens whose exact role in pathogenesis needs to be proven. To understand their in vivo significance, we used Mycoplasma agalactiae as a model exhibiting high-frequency variations of a family of immunodominant Vpma lipoproteins via Xer1-mediated site-specific recombinations. Phase-Locked Mutants (PLMs) expressing single stable Vpma products served as first breakthrough tools in mycoplasmology to study the role of such sophisticated antigenic variation systems. Comparing the general clinical features of sheep infected with a mixture of phase-invariable PLMs (PLMU and PLMY) and the wild type strain, it was earlier concluded that Vpma phase variation is not necessary for infection. Conversely, the current study demonstrates the in vivo indispensability of Vpma switching as inferred from the Vpma phenotypic and genotypic analyses of reisolates obtained during sheep infection and necropsy. PLMY and PLMU stably expressing VpmaY and VpmaU, respectively, for numerous in vitro generations, switched to new Vpma phenotypes inside the sheep. Molecular genetic analysis of selected ‘switchover’ clones confirmed xer1 disruption and revealed complex new rearrangements like chimeras, deletions and duplications in the vpma loci that were previously unknown in type strain PG2. Another novel finding is the differential infection potential of Vpma variants, as local infection sites demonstrated an almost complete dominance of PLMY over PLMU especially during early stages of both conjunctival and intramammary co-challenge infections, indicating a comparatively better in vivo fitness of VpmaY expressors. The data suggest that Vpma antigenic variation is imperative for survival and persistence inside the immunocompetent host, and although Xer1 is necessary for causing Vpma variation in vitro, it is not a virulence factor because alternative Xer1-independent mechanisms operate in vivo, likely under the selection pressure of the host-induced immune response. This singular study highlights exciting new aspects of mycoplasma antigenic variation systems, including the regulation of expression by host factors.


Infection and Immunity | 2015

Simultaneous Identification of Potential Pathogenicity Factors of Mycoplasma agalactiae in the Natural Ovine Host by Negative Selection

Shivanand Hegde; Shrilakshmi Hegde; Martina Zimmermann; Martina Flöck; Joachim Spergser; Renate Rosengarten; Rohini Chopra-Dewasthaly

ABSTRACT Mycoplasmas possess complex pathogenicity determinants that are largely unknown at the molecular level. Mycoplasma agalactiae serves as a useful model to study the molecular basis of mycoplasma pathogenicity. The generation and in vivo screening of a transposon mutant library of M. agalactiae were employed to unravel its host colonization factors. Tn4001mod mutants were sequenced using a novel sequencing method, and functionally heterogeneous pools containing 15 to 19 selected mutants were screened simultaneously through two successive cycles of sheep intramammary infections. A PCR-based negative selection method was employed to identify mutants that failed to colonize the udders and draining lymph nodes in the animals. A total of 14 different mutants found to be absent from ≥95% of samples were identified and subsequently verified via a second round of stringent confirmatory screening where 100% absence was considered attenuation. Using this criterion, seven mutants with insertions in genes MAG1050, MAG2540, MAG3390, uhpT, eutD, adhT, and MAG4460 were not recovered from any of the infected animals. Among the attenuated mutants, many contain disruptions in hypothetical genes, implying their previously unknown role in M. agalactiae pathogenicity. These data indicate the putative role of functionally different genes, including hypothetical ones, in the pathogenesis of M. agalactiae. Defining the precise functions of the identified genes is anticipated to increase our understanding of M. agalactiae infections and to develop successful intervention strategies against it.


Fems Immunology and Medical Microbiology | 2015

Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions.

Shrilakshmi Hegde; Cordula Gabriel; Martin Kragl; Rohini Chopra-Dewasthaly

Appropriate infection models are imperative for the understanding of pathogens like mycoplasmas that are known for their strict host and tissue specificity, and lack of suitable cell and small animal models has hindered pathogenicity studies. This is particularly true for the economically important group of ruminant mycoplasmas whose virulence factors need to be elucidated for designing effective intervention strategies. Mycoplasma agalactiae serves as a useful role model especially because it is phylogenetically very close to M. bovis and causes similar symptoms by as yet unknown mechanisms. Here, we successfully prepared and characterized four different primary sheep cell lines, namely the epithelial and stromal cells from the mammary gland and uterus, respectively. Using immunohistochemistry, we identified vimentin and cytokeratin as specific markers to confirm the typical cell phenotypes of these primary cells. Furthermore, M. agalactiae’s consistent adhesion and invasion into these primary cells proves the reliability of these cell models. Mimicking natural infections, mammary epithelial and stromal cells showed higher invasion and adhesion rates compared to the uterine cells as also seen via double immunofluorescence staining. Altogether, we have generated promising in vitro cell models to study host–pathogen interactions of M. agalactiae and related ruminant pathogens in a more authentic manner.


Veterinary Research | 2016

Genetic loci of Mycoplasma agalactiae involved in systemic spreading during experimental intramammary infection of sheep

Shivanand Hegde; Martina Zimmermann; Martina Flöck; René Brunthaler; Joachim Spergser; Renate Rosengarten; Rohini Chopra-Dewasthaly

Mycoplasmas are amongst the most successful pathogens of both humans and animals yet the molecular basis of mycoplasma pathogenesis is poorly understood. This is partly due to the lack of classical virulence factors and little similarity to common bacterial pathogenic determinants. Using Mycoplasma agalactiae as a model we initiated research in this direction by screening a transposon mutant library in the natural sheep host using a negative selection method. Having successfully identified putative factors involved in the colonization of local infection and lymphogenic sites, the current study assessed mutants unable to spread systemically in sheep after experimental intramammary infection. Analysis of distant body sites for complete absence of mutants via SSM PCR revealed that additional set of genes, such as pdhB, oppC, oppB, gtsB, MAG1890, MAG5520 and MAG3650 are required for systemic spreading apart from those that were necessary for initial colonization. Additional in vitro studies with the mutants absent at these systemic sites confirmed the potential role of some of the respective gene products concerning their interaction with host cells. Mutants of pdhB, oppC and MAG4460 exhibited significantly slower growth in the presence of HeLa cells in MEM medium. This first attempt to identify genes exclusively required for systemic spreading provides a basis for further in-depth research to understand the exact mechanism of chronicity and persistence of M. agalactiae.


PLOS ONE | 2016

Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro.

Shrilakshmi Hegde; Shivanand Hegde; Renate Rosengarten; Rohini Chopra-Dewasthaly

Mycoplasma agalactiae is the etiological agent of the contagious agalactia syndrome in sheep and goats and causes significant economic losses worldwide. Yet the mechanism of pathogenesis is largely unknown. Even whole-genome sequence analysis of its pathogenic type strain did not lead to any conclusions regarding its virulence or pathogenicity factors. Although inflammation and tissue destruction at the local site of M. agalactiae infection are largely considered as effects of the host immune response, the direct effect of the agent on host cells is not completely understood. The aim of this study was to investigate the effect of M. agalactiae infection on the quality and viability of host cells in vitro. Changes in cell morphology including cell elongation, cytoplasm shrinkage and membrane blebbing were observed in infected HeLa cells. Chromatin condensation and increased caspase-3 cleavage in infected HeLa cells 48 h after infection suggests an apoptosis-like phenomenon in M. agalactiae-infected cells. In compliance with these results, decreased viability and cell lysis of M. agalactiae-infected HeLa cells was also observed. Measurement of the amount of LDH released after M. agalactiae infection revealed a time- and dose-dependent increase in HeLa cell lysis. A significant decrease in LDH released after gentamicin treatment of infected cells confirmed the major role of cytadherent M. agalactiae in inducing host cell lysis. This is the first study illustrating M. agalactiae’s induction of cytopathic effects in infected HeLa cells. Further detailed investigation of infected host tissue for apoptotic markers might demonstrate the association between M. agalactiae-induced host cell lysis and the tissue destruction observed during M. agalactiae natural infection.

Collaboration


Dive into the Rohini Chopra-Dewasthaly's collaboration.

Top Co-Authors

Avatar

Renate Rosengarten

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Martina Zimmermann

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Jechlinger

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Joachim Spergser

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Shrilakshmi Hegde

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Christine Citti

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Shivanand Hegde

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

René Brunthaler

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Martina Flöck

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Michelle Glew

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge