Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohini Kuner is active.

Publication


Featured researches published by Rohini Kuner.


Nature Medicine | 2010

Central mechanisms of pathological pain

Rohini Kuner

Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.


Neuron | 2002

Plexin-B1 Directly Interacts with PDZ-RhoGEF/LARG to Regulate RhoA and Growth Cone Morphology

Jakub M. Swiercz; Rohini Kuner; Jürgen Behrens; Stefan Offermanns

Plexins are widely expressed transmembrane proteins that, in the nervous system, mediate repulsive signals of semaphorins. However, the molecular nature of plexin-mediated signal transduction remains poorly understood. Here, we demonstrate that plexin-B family members associate through their C termini with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. Activation of plexin-B1 by semaphorin 4D regulates PDZ-RhoGEF/LARG activity leading to RhoA activation. In addition, a dominant-negative form of PDZ-RhoGEF blocks semaphorin 4D-induced growth cone collapse in primary hippocampal neurons. Our study indicates that the interaction of mammalian plexin-B family members with the multidomain proteins PDZ-RhoGEF and LARG represents an essential molecular link between plexin-B and localized, Rho-mediated downstream signaling events which underly various plexin-mediated cellular phenomena including axonal growth cone collapse.


Neuron | 2004

The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain

Bettina Hartmann; Seifollah Ahmadi; Paul A. Heppenstall; Gary R. Lewin; Claus Schott; Thilo Borchardt; Peter H. Seeburg; Hanns Ulrich Zeilhofer; Rolf Sprengel; Rohini Kuner

Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.


Journal of Cell Biology | 2004

Plexin-B1/RhoGEF–mediated RhoA activation involves the receptor tyrosine kinase ErbB-2

Jakub M. Swiercz; Rohini Kuner; Stefan Offermanns

Plexins are widely expressed transmembrane proteins that mediate the effects of semaphorins. The molecular mechanisms of plexin-mediated signal transduction are still rather unclear. Plexin-B1 has recently been shown to mediate activation of RhoA through a stable interaction with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. However, it is unclear how the activity of plexin-B1 and its downstream effectors is regulated by its ligand Sema4D. Here, we show that plexin-B family members stably associate with the receptor tyrosine kinase ErbB-2. Binding of Sema4D to plexin-B1 stimulates the intrinsic tyrosine kinase activity of ErbB-2, resulting in the phosphorylation of both plexin-B1 and ErbB-2. A dominant-negative form of ErbB-2 blocks Sema4D-induced RhoA activation as well as axonal growth cone collapse in primary hippocampal neurons. Our data indicate that ErbB-2 is an important component of the plexin-B receptor system and that ErbB-2–mediated phosphorylation of plexin-B1 is critically involved in Sema4D-induced RhoA activation, which underlies cellular phenomena downstream of plexin-B1, including axonal growth cone collapse.


Nature Medicine | 2009

Hematopoietic colony–stimulating factors mediate tumor-nerve interactions and bone cancer pain

Matthias Schweizerhof; Sebastian Stösser; Martina Kurejova; Christian Njoo; Vijayan Gangadharan; Nitin Agarwal; Martin Schmelz; Kiran Kumar Bali; Christoph W. Michalski; Stefan Brugger; Anthony H. Dickenson; Donald A. Simone; Rohini Kuner

Pain is one of the most severe and debilitating symptoms associated with several forms of cancer. Various types of carcinomas and sarcomas metastasize to skeletal bones and cause spontaneous bone pain and hyperalgesia, which is accompanied by bone degradation and remodeling of peripheral nerves. Despite recent advances, the molecular mechanisms underlying the development and maintenance of cancer-evoked pain are not well understood. Several types of non-hematopoietic tumors secrete hematopoietic colony-stimulating factors that act on myeloid cells and tumor cells. Here we report that receptors and signaling mediators of granulocyte- and granulocyte-macrophage colony-stimulating factors (G-CSF and GM-CSF) are also functionally expressed on sensory nerves. GM-CSF sensitized nerves to mechanical stimuli in vitro and in vivo, potentiated CGRP release and caused sprouting of sensory nerve endings in the skin. Interruption of G-CSF and GM-CSF signaling in vivo led to reduced tumor growth and nerve remodeling, and abrogated bone cancer pain. The key significance of GM-CSF signaling in sensory neurons was revealed by an attenuation of tumor-evoked pain following a sensory nerve–specific knockdown of GM-CSF receptors. These results show that G-CSF and GM-CSF are important in tumor-nerve interactions and suggest that their receptors on primary afferent nerve fibers constitute potential therapeutic targets in cancer pain.


Cell Death & Differentiation | 2006

Control of neuronal branching by the death receptor CD95 (Fas/Apo-1)

Cecilia Zuliani; Susanne Kleber; Stefan Klussmann; T. Wenger; Marc Kenzelmann; Nina Schreglmann; Albert Martínez; J. A. del Rio; Eduardo Soriano; P. Vodrazka; Rohini Kuner; H. J. Groene; Ingrid Herr; Peter H. Krammer; Ana Martin-Villalba

The CD95 (Apo-1/Fas)/CD95 ligand (CD95L) system is best characterized as a trigger of apoptosis. Nevertheless, despite broad expression of CD95L and CD95 in the developing brain, absence of functional CD95 (lpr mice) or CD95L (gld mice) does not alter neuronal numbers. Here, we report that in embryonic hippocampal and cortical neurons in vivo and in vitro CD95L does not induce apoptosis. Triggering of CD95 in cultured immature neurons substantially increases neurite branches by promoting their formation. The branching increase occurs in a caspase-independent and death domain-dependent manner and is paralleled by an increase in the nonphosphorylated form of Tau. Most importantly, lpr and gld mutants exhibit a reduced number of dendritic branches in vivo at the time when synapse formation takes place. These data reveal a novel function for the CD95 system and add to the picture of guidance molecules in the developing brain.


Nature Medicine | 2006

Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain.

Anke Tappe; Matthias Klugmann; Ceng Luo; David Hirlinger; Nitin Agarwal; Justus Benrath; Markus U Ehrengruber; Matthew J During; Rohini Kuner

Glutamatergic signaling and intracellular calcium mobilization in the spinal cord are crucial for the development of nociceptive plasticity, which is associated with chronic pathological pain. Long-form Homer proteins anchor glutamatergic receptors to sources of calcium influx and release at synapses, which is antagonized by the short, activity-dependent splice variant Homer1a. We show here that Homer1a operates in a negative feedback loop to regulate the excitability of the pain pathway in an activity-dependent manner. Homer1a is rapidly and selectively upregulated in spinal cord neurons after peripheral inflammation in an NMDA receptor–dependent manner. Homer1a strongly attenuates calcium mobilization as well as MAP kinase activation induced by glutamate receptors and reduces synaptic contacts on spinal cord neurons that process pain inputs. Preventing activity-induced upregulation of Homer1a using shRNAs in mice in vivo exacerbates inflammatory pain. Thus, activity-dependent uncoupling of glutamate receptors from intracellular signaling mediators is a novel, endogenous physiological mechanism for counteracting sensitization at the first, crucial synapse in the pain pathway. Furthermore, we observed that targeted gene transfer of Homer1a to specific spinal segments in vivo reduces inflammatory hyperalgesia. Thus, Homer1 function is crucially involved in pain plasticity and constitutes a promising therapeutic target for the treatment of chronic inflammatory pain.


The Journal of Neuroscience | 2009

A Key Role for gp130 Expressed on Peripheral Sensory Nerves in Pathological Pain

Manfred Andratsch; Norbert Mair; Cristina E. Constantin; Nadja Scherbakov; Camilla Benetti; Serena Quarta; Christian Vogl; Claudia A. Sailer; Nurcan Üçeyler; Johannes Brockhaus; Rudolf Martini; Claudia Sommer; Hanns Ulrich Zeilhofer; Werner Müller; Rohini Kuner; John B. Davis; Stefan Rose-John; Michaela Kress

Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-δ via Gab1/2/PI3K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.


The Journal of Neuroscience | 2007

A Molecular Basis of Analgesic Tolerance to Cannabinoids

Anke Tappe-Theodor; Nitin Agarwal; István Katona; Tiziana Rubino; Lene Martini; Jakub M. Swiercz; Ken Mackie; Hannah Monyer; Daniela Parolaro; Jennifer L. Whistler; Thomas Kuner; Rohini Kuner

Clinical usage of cannabinoids in chronic pain states is limited by their central side effects and the pharmacodynamic tolerance that sets in after repeated dosage. Analgesic tolerance to cannabinoids in vivo could be caused by agonist-induced downregulation and intracellular trafficking of cannabinoid receptors, but little is known about the molecular mechanisms involved. We show here that the type 1 cannabinoid receptor (CB1) interacts physically with G-protein-associated sorting protein 1 (GASP1), a protein that sorts receptors in lysosomal compartments destined for degradation. CB1–GASP1 interaction was observed to be required for agonist-induced downregulation of CB1 in spinal neurons ex vivo as well as in vivo. Importantly, uncoupling CB1 from GASP1 in mice in vivo abrogated tolerance toward cannabinoid-induced analgesia. These results suggest that GASP1 is a key regulator of the fate of CB1 after agonist exposure in the nervous system and critically determines analgesic tolerance to cannabinoids.


Neuron | 2016

A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing

Marina Eliava; Meggane Melchior; H. Sophie Knobloch-Bollmann; Jérôme Wahis; Miriam da Silva Gouveia; Yan Tang; Alexandru Cristian Ciobanu; Rodrigo Triana del Rio; Lena C. Roth; Ferdinand Althammer; Virginie Chavant; Yannick Goumon; Tim Gruber; Nathalie Petit-Demoulière; Marta Busnelli; Bice Chini; Linette Liqi Tan; Mariela Mitre; Robert C. Froemke; Moses V. Chao; Günter Giese; Rolf Sprengel; Rohini Kuner; Pierrick Poisbeau; Peter H. Seeburg; Ron Stoop; Alexandre Charlet; Valery Grinevich

Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.

Collaboration


Dive into the Rohini Kuner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ceng Luo

Heidelberg University

View shared research outputs
Researchain Logo
Decentralizing Knowledge