Rohini Polavarapu
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rohini Polavarapu.
Journal of the American College of Cardiology | 2012
Aloke V. Finn; Masataka Nakano; Rohini Polavarapu; Vinit Karmali; Omar Saeed; XiaoQing Zhao; Saami K. Yazdani; Fumiyuki Otsuka; Talina Davis; Anwer Habib; Jagat Narula; Frank D. Kolodgie; Renu Virmani
OBJECTIVES The purpose of this study was to examine selective macrophage differentiation occurring in areas of intraplaque hemorrhage in human atherosclerosis. BACKGROUND Macrophage subsets are recognized in atherosclerosis, but the stimulus for and importance of differentiation programs remain unknown. METHODS We used freshly isolated human monocytes, a rabbit model, and human atherosclerotic plaques to analyze macrophage differentiation in response to hemorrhage. RESULTS Macrophages characterized by high expression of both mannose and CD163 receptors preferentially exist in atherosclerotic lesions at sites of intraplaque hemorrhage. These hemoglobin (Hb)-stimulated macrophages, M(Hb), are devoid of neutral lipids typical of foam cells. In vivo modeling of hemorrhage in the rabbit model demonstrated that sponges exposed to red cells showed an increase in mannose receptor-positive macrophages only when these cells contained Hb. Cultured human monocytes exposed to Hb:haptoglobin complexes, but not interleukin-4, expressed the M(Hb) phenotype and were characterized by their resistance to cholesterol loading and up-regulation of ATP-binding cassette (ABC) transporters. M(Hb) demonstrated increased ferroportin expression, reduced intracellular iron, and reactive oxygen species (ROS). Degradation of ferroportin using hepcidin increased ROS and inhibited ABCA1 expression and cholesterol efflux to apolipoprotein A-I, suggesting reduced ROS triggers these effects. Knockdown of liver X receptor alpha (LXRα) inhibited ABC transporter expression in M(Hb) and macrophages differentiated in the antioxidant superoxide dismutase. Last, LXRα luciferase reporter activity was increased in M(Hb) and significantly reduced by overnight treatment with hepcidin. Collectively, these data suggest that reduced ROS triggers LXRα activation and macrophage reverse cholesterol transport. CONCLUSIONS Hb is a stimulus for macrophage differentiation in human atherosclerotic plaques. A decrease in macrophage intracellular iron plays an important role in this nonfoam cell phenotype by reducing ROS, which drives transcription of ABC transporters through activation of LXRα. Reduction of macrophage intracellular iron may be a promising avenue to increase macrophage reverse cholesterol transport.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2012
Omar Saeed; Fumiyuki Otsuka; Rohini Polavarapu; Vinit Karmali; Daiana Weiss; Talina Davis; Bradley S. Rostad; Kimberly Pachura; Lila Adams; John L. Elliott; W. Robert Taylor; Jagat Narula; Frank D. Kolodgie; Renu Virmani; Charles C. Hong; Aloke V. Finn
Objective—We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explored whether reducing macrophage intracellular iron levels via pharmacological suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results—To suppress hepcidin, increase expression of the iron exporter ferroportin, and reduce macrophage intracellular iron, we used a small molecule inhibitor of bone morphogenetic protein (BMP) signaling, LDN 193189 (LDN). LDN (10 mg/kg IP b.i.d.) was administered to mice, and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to apolipoprotein E−/− mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; P=0.03), reduced Oil Red O–positive lipid area by 50% (n=8; P=0.02), and decreased total plaque area by 43% (n=8; P=0.001). LDN suppressed liver hepcidin transcription and increased macrophage ferroportin, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1, and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion—These data suggest that pharmacological manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis.
The Journal of Neuroscience | 2005
Rohini Polavarapu; Maria Carolina Gongora; Jeffrey A. Winkles; Manuel Yepes
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts on responsive cells via binding to a small cell-surface receptor named fibroblast growth factor-inducible-14 (Fn14). TWEAK can stimulate numerous cellular responses including cell proliferation, migration, and proinflammatory molecule production. The present study investigated whether TWEAK plays a role in the regulation of the permeability of the neurovascular unit (NVU). We found that intracerebral injection of TWEAK in wild-type mice induces activation of the nuclear factor-κB (NF-κB) pathway and matrix metalloproteinase-9 (MMP-9) expression in the brain with resultant disruption in the structure of the NVU and increase in the permeability of the blood-brain barrier (BBB). TWEAK did not increase MMP-9 activity or BBB permeability when injected into mice genetically deficient in the NF-κB family member p50. Furthermore, we report that inhibition of TWEAK activity during cerebral ischemia with an Fn14-Fc decoy receptor results in significant preservation of the integrity of the NVU with attenuation of cerebral ischemia-induced increase in the permeability of the BBB. We conclude that the cytokine TWEAK plays a role in the disruption of the structure and permeability of the NVU during physiological and pathological conditions.
Journal of Cerebral Blood Flow and Metabolism | 2007
Xiaohui Zhang; Jeffrey A. Winkles; Maria Carolina Gongora; Rohini Polavarapu; Jennifer S. Michaelson; Kyungmin Hahm; Linda C. Burkly; Meyer Friedman; Xiao-Jiang Li; Manuel Yepes
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts via binding to a cell surface receptor named Fn14. To study the role of this cytokine in the regulation of the permeability of the neurovascular unit (NVU) during cerebral ischemia, TWEAK activity was inhibited in wild-type mice with a soluble Fn14-Fc decoy receptor administered either immediately or 1 h after middle cerebral artery occlusion (MCAO). Administration of Fn14-Fc decoy resulted in faster recovery of motor function and a 66.4%±10% decrease in Evans blue dye extravasation when treatment was administered immediately after MCAO and a 46.1%±13.1% decrease when animals were treated 1 h later (n=4, P<0.05). Genetic deficiency of Fn14 resulted in a 60%±12.8% decrease in the volume of the ischemic lesion (n=6, P<0.05), and a 87%±22% inhibition in Evans blue dye extravasation 48 h after the onset of the ischemic insult (n=6, P<0.005). Compared with control animals, treatment with Fn14-Fc decoy or genetic deficiency of Fn14 also resulted in a significant inhibition of nuclear factor-κB pathway activation, matrix metalloproteinase-9 activation and basement membrane laminin degradation after MCAO. These findings show that the cytokine TWEAK plays a role in the disruption of the structure of the NVU during cerebral ischemia and that TWEAK antagonism is a potential therapeutic strategy for acute cerebral ischemia.
Blood | 2008
Jie An; Chen Zhang; Rohini Polavarapu; Xiaohui Zhang; Xiumei Zhang; Manuel Yepes
Tissue-type plasminogen activator (tPA) is found in the intravascular space and in the central nervous system. The low-density lipoprotein receptor-related protein (LRP) is expressed in neurons and in perivascular astrocytes. During cerebral ischemia, tPA induces the shedding of LRPs extracellular domain from perivascular astrocytes, and this is followed by the development of cerebral edema. Protein kinase B (Akt) is a serine/threonine kinase that plays a critical role not only in cell survival but also in the regulation of the permeability of the blood-brain barrier. We found that, in the early phases of the ischemic insult, the interaction between tPA and LRP induces Akt phosphorylation (pAkt) in perivascular astrocytes and inhibits pAkt in neurons. Coimmunoprecipitation studies indicate that pAkt and LRPs intracellular domain interact in perivascular astrocytes and that this interaction is dependent on the presence of tPA and results in the development of edema. Together, these results indicate that, in the early stages of cerebral ischemia, the interaction between tPA and LRP in perivascular astrocytes induces the activation of a cell signaling event mediated by pAkt that leads to increase in the permeability of the blood-brain barrier.
American Journal of Pathology | 2008
Rohini Polavarapu; Jie An; Chen Zhang; Manuel Yepes
The low-density lipoprotein receptor-related protein (LRP), a member of the low-density lipoprotein receptor gene family, mediates cellular signal transduction pathways. In this study we investigated the role of LRP in cell death. We found that incubation of mouse embryonic fibroblasts in serum-free media induces caspase-3 activation, an effect that is attenuated in LRP-deficient (LRP(-/-)) mouse embryonic fibroblasts. Since we previously demonstrated that middle cerebral artery occlusion (MCAO) in mice induces shedding of the LRP ectodomain, we investigated here whether cerebral ischemia induces regulated intramembrane proteolysis of LRP and whether this process is related to cell death. We found that MCAO induces an increase in gamma-secretase activity in the ischemic hemisphere and that treatment with the gamma-secretase inhibitor L-685,458 improves the neurological outcome and results in a 50% decrease in the volume of the ischemic lesion. Furthermore, MCAO caused nuclear translocation of the intracellular domain of LRP in neurons within the area of ischemic penumbra, and this effect was attenuated in mice treated with L-685,458. Finally, inhibition of either LRP or gamma-secretase attenuated cerebral ischemia-induced caspase-3 cleavage and apoptotic cell death. In summary, our results indicate that gamma-secretase-mediated regulated intramembrane proteolysis of LRP results in cell death under ischemic conditions.
Nature Communications | 2015
Hirokuni Akahori; Vinit Karmali; Rohini Polavarapu; Alicia N. Lyle; Daiana Weiss; Eric Shin; Ahsan Husain; Nawazish Naqvi; Richard Van Dam; Anwer Habib; Cheol Ung Choi; Adrienne L. King; Kimberly Pachura; W. Robert Taylor; David J. Lefer; Aloke V. Finn
Macrophages are an essential component of the immune response to ischaemic injury and play an important role in promoting inflammation and its resolution, which is necessary for tissue repair. The type I transmembrane glycoprotein CD163 is exclusively expressed on macrophages, where it acts as a receptor for haemoglobin:haptoglobin complexes. An extracellular portion of CD163 circulates in the blood as a soluble protein, for which no physiological function has so far been described. Here we show that during ischaemia, soluble CD163 functions as a decoy receptor for TWEAK, a secreted pro-inflammatory cytokine of the tumour necrosis factor family, to regulate TWEAK-induced activation of canonical nuclear factor-κB (NF-κB) and Notch signalling necessary for myogenic progenitor cell proliferation. Mice with deletion of CD163 have transiently elevated levels of TWEAK, which stimulate muscle satellite cell proliferation and tissue regeneration in their ischaemic and non-ischaemic limbs. These results reveal a role for soluble CD163 in regulating muscle regeneration after ischaemic injury.
Journal of the American College of Cardiology | 2013
Anwer Habib; Vinit Karmali; Rohini Polavarapu; Hirokuni Akahori; Masataka Nakano; Saami K. Yazdani; Fumiyuki Otsuka; Kim Pachura; Talina Davis; Jagat Narula; Frank D. Kolodgie; Renu Virmani; Aloke V. Finn
OBJECTIVES This study sought to examine the effect of oral metformin (Mf) therapy on endothelialization in the setting of drug-eluting stents (DES). BACKGROUND Mf is a commonly used therapy in diabetic patients receiving DES. Mf and locally eluted mammalian target of rapamycin (mTOR) inhibitors used in DES have convergent molecular signaling; however, the impact of this drug interaction on stent endothelialization is unknown. METHODS We examined human endothelial aortic cells (HAECs) and a rabbit model of stenting to determine points on molecular convergence between these 2 agents and their impact on stent endothelialization. RESULTS Western blotting of HAECs treated with Mf and the mTOR inhibitor sirolimus and 14-day rabbit iliacs treated with the combination of zotarolimus-eluting stents (ZES) and oral Mf demonstrated greater inhibition of S6 kinase (S6K), a downstream effector of mTOR complex 1, than either treatment alone. HAEC proliferation was significantly inhibited by Mf or sirolimus treatments alone and further reduced when they were combined. Knockdown of S6K via short interfering RNA in HAECs impaired cell proliferation via a cyclin D1-dependent mechanism, whereas its overexpression rescued the antiproliferative effects of both agents. Last, endothelialization and endothelial cell proliferation at 14 days were assessed in rabbits receiving ZES or bare-metal stents and Mf or placebo by scanning electron microscopy and bromodeoxyuridine/CD31 labeling, respectively. Both endpoints were inhibited by ZES treatment alone and were further reduced by the combination of Mf and ZES. CONCLUSIONS Significant convergence of signaling occurs between Mf and locally delivered mTOR inhibitors at S6K. This further impairs endothelial recovery/proliferation via an S6K-dependent mechanism. Patients receiving Mf in combination with stents that elute mTOR inhibitors are potentially at increased risk of delayed endothelial healing and stent thrombosis.
Circulation Research | 2009
Aloke V. Finn; Michael John; Gaku Nakazawa; Rohini Polavarapu; Vinit Karmali; Xin Xu; Qi Cheng; Talina Davis; Chitra Raghunathan; Eduardo Acampado; Tucker Ezell; Scott Lajoie; Michael J. Eppihimer; Frank D. Kolodgie; Renu Virmani; Herman K. Gold
Rationale: Sirolimus-eluting coronary stents (SESs) and paclitaxel-eluting coronary stents (PESs) are used to reduce restenosis but have different sites of action. The molecular targets of sirolimus overlap with those of the peroxisome proliferator-activated receptor (PPAR)&ggr; agonist rosiglitazone (RSG) but the consequence of this interaction on endothelialization is unknown. Objective: Using the New Zealand white rabbit iliac model of stenting, we examined the effects of RSG on SESs, PESs, and bare metal stents endothelialization. Methods and Results: Animals receiving SESs, PESs, or bare metal stents and either RSG (3 mg/kg per day) or placebo were euthanized at 28 days, and arteries were evaluated by scanning electron microscopy. Fourteen-day organ culture and Western blotting of iliac arteries and tissue culture experiments were conducted. Endothelialization was significantly reduced by RSG in SESs but not in PESs or bare metal stents. Organ culture revealed reduced vascular endothelial growth factor in SESs receiving RSG compared to RSG animals receiving bare metal stent or PESs. Quantitative polymerase chain reaction in human aortic endothelial cells (HAECs) revealed that sirolimus (but not paclitaxel) inhibited RSG-induced vascular endothelial growth factor transcription. Western blotting demonstrated that inhibition of molecular signaling in SES+RSG–treated arteries was similar to findings in HAECs treated with RSG and small interfering RNA to PPAR&ggr;, suggesting that sirolimus inhibits PPAR&ggr;. Transfection of HAECs with mTOR (mammalian target of rapamycin) short hairpin RNA and with Akt2 small interfering RNA significantly inhibited RSG-mediated transcriptional upregulation of heme oxygenase-1, a PPAR&ggr; target gene. Chromatin immunoprecipitation assay demonstrated sirolimus interferes with binding of PPAR&ggr; to its response elements in heme oxygenase-1 promoter. Conclusions: mTOR/Akt2 is required for optimal PPAR&ggr; activation. Patients who receive SESs during concomitant RSG treatment may be at risk for delayed stent healing.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Anwer Habib; Vinit Karmali; Rohini Polavarapu; Hirokuni Akahori; Qi Cheng; Kim Pachura; Frank D. Kolodgie; Aloke V. Finn
Objective—Sirolimus (SRL) is an immunosuppressant drug used to prevent rejection in organ transplantation and neointimal hyperplasia when delivered from drug-eluting stents. Major side effects of SRL include edema and local collection of intimal lipid deposits at drug-eluting stent sites, suggesting that SRL impairs endothelial barrier function (EBF). The aim of this study was to address the role of SRL on impaired EBF and the potential mechanisms involved. Approach and Results—Cultured human aortic endothelial cells (HAECs) and intact human and mouse endothelium was examined to determine the effect of SRL, which binds FKBP12.6 to inhibit the mammalian target of rapamycin, on EBF. EBF, measured by transendothelial electrical resistance, was impaired in HAECs when treated with SRL or small interfering RNA for FKBP12.6 and reversed when pretreated with ryanodine, a stabilizer of ryanodine receptor 2 intracellular calcium release channels. Intracellular calcium increased in HAECs treated with SRL and normalized with ryanodine pretreatment. SRL-treated HAECs demonstrated increases in protein kinase C-&agr; phosphorylation, a calcium sensitive serine/threonine kinase important in vascular endothelial (VE) cadherin barrier function through its interaction with p120-catenin (p120). Immunostaining of HAECs, human coronary and mouse aortic endothelium treated with SRL showed disruption of p120–VE cadherin interaction treated with SRL. SRL impairment of HAEC EBF was reduced with protein kinase C-&agr; small interfering RNA. Mice treated with SRL demonstrated increased vascular permeability by Evans blue albumin extravasation in the lungs, heart, and aorta. Conclusions—SRL-FKBP12.6 impairs EBF by activation of protein kinase C-&agr; and downstream disruption of the p120–VE cadherin interaction in vascular endothelium. These data suggest this mechanism may be an important contributor of SRL side effects related to impaired EBF.