Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohit Mathur is active.

Publication


Featured researches published by Rohit Mathur.


Journal of Geophysical Research | 2005

Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004

S. A. McKeen; James M. Wilczak; Georg A. Grell; I. Djalalova; S. Peckham; E.-Y. Hsie; Wanmin Gong; V. Bouchet; S. Ménard; R. Moffet; John N. McHenry; Jeff McQueen; Youhua Tang; Gregory R. Carmichael; Mariusz Pagowski; A. Chan; T. Dye; G. J. Frost; Pius Lee; Rohit Mathur

The real-time forecasts of ozone (O 3 ) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during July and August of 2004 (53 days) through the Aerometric Information Retrieval Now (AIRNow) network at roughly 340 monitoring stations throughout the eastern United States and southern Canada. One of the first ever real-time ensemble O 3 forecasts, created by combining the seven separate forecasts with equal weighting, is also evaluated in terms of standard statistical measures, threshold statistics, and variance analysis. The ensemble based on the mean of the seven models and the ensemble based on the median are found to have significantly more temporal correlation to the observed daily maximum 1-hour average and maximum 8-hour average O 3 concentrations than any individual model. However, root-mean-square errors (RMSE) and skill scores show that the usefulness of the uncorrected ensembles is limited by positive O 3 biases in all of the AQFMs. The ensembles and AQFM statistical measures are reevaluated using two simple bias correction algorithms for forecasts at each monitor location: subtraction of the mean bias and a multiplicative ratio adjustment, where corrections are based on the full 53 days of available comparisons. The impact the two bias correction techniques have on RMSE, threshold statistics, and temporal variance is presented. For the threshold statistics a preferred bias correction technique is found to be model dependent and related to whether the model overpredicts or underpredicts observed temporal O 3 variance. All statistical measures of the ensemble mean forecast, and particularly the bias-corrected ensemble forecast, are found to be insensitive to the results of any particular model. The higher correlation coefficients, low RMSE, and better threshold statistics for the ensembles compared to any individual model point to their preference as a real-time O 3 forecast.


Weather and Forecasting | 2005

Linking the Eta Model with the Community Multiscale Air Quality (CMAQ) Modeling System to Build a National Air Quality Forecasting System

Tanya L. Otte; George Pouliot; Jonathan E. Pleim; Jeffrey Young; Kenneth L. Schere; David C. Wong; Pius Lee; Marina Tsidulko; Jeffery T. McQueen; Paula Davidson; Rohit Mathur; Hui-Ya Chuang; Geoff DiMego; Nelson L. Seaman

Abstract NOAA and the U.S. Environmental Protection Agency (EPA) have developed a national air quality forecasting (AQF) system that is based on numerical models for meteorology, emissions, and chemistry. The AQF system generates gridded model forecasts of ground-level ozone (O3) that can help air quality forecasters to predict and alert the public of the onset, severity, and duration of poor air quality conditions. Although AQF efforts have existed in metropolitan centers for many years, this AQF system provides a national numerical guidance product and the first-ever air quality forecasts for many (predominantly rural) areas of the United States. The AQF system is currently based on NCEP’s Eta Model and the EPA’s Community Multiscale Air Quality (CMAQ) modeling system. The AQF system, which was implemented into operations at the National Weather Service in September of 2004, currently generates twice-daily forecasts of O3 for the northeastern United States at 12-km horizontal grid spacing. Preoperationa...


Geophysical Research Letters | 2014

Importance of tropospheric ClNO2 chemistry across the Northern Hemisphere

Golam Sarwar; Heather Simon; Jia Xing; Rohit Mathur

Laboratory and field experiments have revealed that uptake of dinitrogen pentoxide (N2O5) on aerosols containing chloride produces nitryl chloride (ClNO2) and nitric acid. We incorporate heterogeneous ClNO2 formation into the hemispheric Community Multiscale Air Quality model. This heterogeneous chemistry substantially enhances ClNO2 levels in several areas of the Northern Hemisphere and alters the composition of airborne reactive nitrogen, comprising more than 15% of monthly mean values in some areas. Model results suggest that this heterogeneous chemistry reduces monthly mean total nitrate by up to 25% and enhances monthly mean daily maximum 8 h ozone by up to 7.0 ppbv. The pathway also enhances hydroxyl radical by more than 20% in some locations which in turn increases sulfate and other secondary pollutants. The largest ClNO2 concentrations and impacts occur over China and Western Europe, two areas in which few relevant field measurements have been made.


Journal of Geophysical Research | 2007

A comparison of CMAQ‐based aerosol properties with IMPROVE, MODIS, and AERONET data

Biswadev Roy; Rohit Mathur; Alice B. Gilliland; Steven C. Howard

[1] Evaluation of concentrations predicted by air quality models is needed to ensure that model results are compatible with observations. In this study aerosol properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations are compared with routine data from NASA satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Sun-synchronous Terra satellite, NASA’s ground-based Aerosol Robotic Network (AERONET), and the ground-based Interagency Monitoring of Protected Visual Environment (IMPROVE) network. The motivation for this analysis is to determine how best to use these parameters in evaluating model-predicted PM2.5 concentrations. CMAQ surface extinction estimates due to scattering at 550 nm wavelength are compared with the IMPROVE nephelometer data obtained from 25 sites within the United States. It is found that model-predicted surface extinctions bear high correlations with nephelometer measured data. Sulfate fractional aerosol optical depth (AOD) is found to dominate in the northeastern part of the United States; hence ground-based measurement of sulfate concentrations have been compared with time series of columnar AOD as observed by the MODIS instrument and also with the CMAQ-predicted tropospheric column values obtained during the June– August period of 2001. CMAQ surface extinctions are found to be relatively higher than the IMPROVE nephelometer observations; however, there is a good agreement between CMAQ AOD trends and AERONET and MODIS data, obtained at the seven AERONET sites located in the eastern United States. CMAQ is also found to capture the day-to-day variability in the spatial AOD patterns. Monthly average satellite AOD estimates are found to be higher than the AOD data obtained using the CMAQ-predicted aerosol concentrations. Seasonal variation of satellite-measured aerosol intensive property ‘‘Angstrom exponent’’ (a gross indicator of the aerosol size distribution) is presented for four selected sites: one each in the eastern and central parts, and two in the western part of the continental United States. Variability of Angstrom exponent at these four selected sites is analyzed in conjunction with the variation of summertime AOD (observed and modeled), mass concentration (observed and modeled) and modeled SO4 average concentrations during the summer (June–August) period of the year 2001. Annual time series of Angstrom exponent data at the four selected sites show a large east-west variation.


Scientific Reports | 2015

Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

Shaocai Yu; Kiran Alapaty; Rohit Mathur; Jonathan E. Pleim; Yuanhang Zhang; Chris Nolte; Brian K. Eder; Kristen M. Foley; Tatsuya Nagashima

Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.


Journal of Applied Meteorology and Climatology | 2007

Daily Simulation of Ozone and Fine Particulates over New York State: Findings and Challenges

Christian Hogrefe; Winston Hao; Kevin Civerolo; Jia-Yeong Ku; Gopal Sistla; R. S. Gaza; L. Sedefian; Kenneth L. Schere; Alice B. Gilliland; Rohit Mathur

Abstract This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community Multiscale Air Quality (CMAQ) model for three extended time periods during 2004 and 2005 have been performed, and predictions were compared with observations of ozone and total and speciated PM2.5. Model performance for 8-h daily maximum O3 was found to be similar to other forecasting systems and to be better than that for the 24-h-averaged total PM2.5. Both pollutants exhibited no seasonal differences in model performance. CMAQ simulations successfully captured the urban–rural and seasonal differences evident in observed total and speciated PM2.5 concentrations. However, total PM2.5 mass was strongly overestimated in the New York City metropolitan area, and further analysis of speciated observations and model predictions showed that most of th...


Atmospheric Pollution Research | 2010

Fate of ammonia emissions at the local to regional scale as simulated by the Community Multiscale Air Quality model

Robin L. Dennis; Rohit Mathur; Jonathan E. Pleim; John T. Walker

Atmospheric deposition of nitrogen contributes to eutrophication of estuarine waters and acidification of lakes and streams. Ammonia also contributes to fine particle formation in the atmosphere and associated health effects. Model projections suggest that NH3 deposition may become the major source of nitrogen deposition in the future. The regional transport of NH3 contributes to nitrogen deposition. Conventional wisdom for many is that a large fraction, or even all, of the NH3 emissions deposit locally, near their source as dry deposition, which we believe is incorrect. In this study we use a regional atmospheric model, the Community Multiscale Air Quality (CMAQ) model to identify the dominant processes that dictate the fate of NH3 and address the questions of how much NH3 deposits locally and what is the range of influence of NH3 emissions. The CMAQ simulation is for June 2002 with a 12–km grid size, covering the eastern half of the U.S. We study three different NH3 dry deposition formulations, including one that represents bi–directional NH3 air–surface exchange, to represent uncertainty in the NH3 dry deposition estimates. We find for 12–km cells with high NH3 emissions from confined animal operations that the local budget is dominated by turbulent transport away from the surface and that from 8–15% of a cell’s NH3 emissions dry deposit locally back within the same cell. The CMAQ estimates are consistent with local, semi–empirical budget studies of NH3 emissions. The range of influence of a single cell’s emissions varies from 180 to 380 kilometers, depending on the dry deposition formulation. At the regional scale, wet deposition is the major loss pathway for NH3; nonetheless, about a quarter of the NH3 emissions are estimated to transport off the North American continent, an estimate that is not sensitive to the uncertainty in dry deposition.


Geoscientific Model Development | 2017

Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1

K. Wyat Appel; Sergey L. Napelenok; Kristen M. Foley; Havala O. T. Pye; Christian Hogrefe; Deborah Luecken; Jesse O. Bash; Shawn J. Roselle; Jonathan E. Pleim; Hosein Foroutan; William T. Hutzell; George Pouliot; Golam Sarwar; Kathleen M. Fahey; Brett Gantt; Robert C. Gilliam; Nicholas Heath; Daiwen Kang; Rohit Mathur; Donna B. Schwede; Tanya L. Spero; David C. Wong; Jeffrey Young

The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency’s (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O3 mean bias, as O3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O3 is low); however, O3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NOx (NO + NO2), VOC and SOx (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O3 due to large, widespread reductions in observed emissions.


Journal of The Air & Waste Management Association | 2006

Performance and Diagnostic Evaluation of Ozone Predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study

Shaocai Yu; Rohit Mathur; Daiwen Kang; Kenneth L. Schere; Brian K. Eder; Jonathan E. Pleim

Abstract A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within [H11006]20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites.The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64 –77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations.


Geophysical Research Letters | 1997

Impact of inert organic nitrate formation on ground-level ozone in a regional air quality model using the Carbon Bond Mechanism 4

Prasad S. Kasibhatla; W. L. Chameides; B. N. Duncan; Marc R. Houyoux; Carey Jang; Rohit Mathur; T. Odman; Aijun Xiu

A regional air quality model is used to assess the impact of inert organic nitrate formation on ground-level ozone in the eastern United States during summer. The chemical mechanism used is the Carbon Bond Mechanism 4 (CBM4), which is widely used by regulatory agencies in the United States in air quality modeling applications. Recently, modifications were made to the reaction mechanism involving the organic peroxy radicals which form inert organic nitrates without a critical scientific review of the effects of these changes. In this study, we demonstrate for the first time that the simulated large-scale distribution of ground-level ozone is extremely sensitive to these mechanism changes. Inclusion of radical-radical reactions involving the organic peroxy radicals suppresses inert organic nitrate formation, and leads to significant increases in nitrogen oxide levels over large parts of the model domain. As a consequence of increased rates of ozone photochemical production, ozone mixing ratios are enhanced by as much 10–25 ppbv when these additional radical termination pathways are considered in the model.

Collaboration


Dive into the Rohit Mathur's collaboration.

Top Co-Authors

Avatar

Christian Hogrefe

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jonathan E. Pleim

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

David C. Wong

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Daiwen Kang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth L. Schere

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

George Pouliot

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Golam Sarwar

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Shawn J. Roselle

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge