Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roi Cohen Kadosh is active.

Publication


Featured researches published by Roi Cohen Kadosh.


Current Biology | 2010

Modulating Neuronal Activity Produces Specific and Long-Lasting Changes in Numerical Competence

Roi Cohen Kadosh; Sonja Soskic; Teresa Iuculano; Ryota Kanai; Vincent Walsh

Summary Around 20% of the population exhibits moderate to severe numerical disabilities [1–3], and a further percentage loses its numerical competence during the lifespan as a result of stroke or degenerative diseases [4]. In this work, we investigated the feasibility of using noninvasive stimulation to the parietal lobe during numerical learning to selectively improve numerical abilities. We used transcranial direct current stimulation (TDCS), a method that can selectively inhibit or excitate neuronal populations by modulating GABAergic (anodal stimulation) and glutamatergic (cathodal stimulation) activity [5, 6]. We trained subjects for 6 days with artificial numerical symbols, during which we applied concurrent TDCS to the parietal lobes. The polarity of the brain stimulation specifically enhanced or impaired the acquisition of automatic number processing and the mapping of number into space, both important indices of numerical proficiency [7–9]. The improvement was still present 6 months after the training. Control tasks revealed that the effect of brain stimulation was specific to the representation of artificial numerical symbols. The specificity and longevity of TDCS on numerical abilities establishes TDCS as a realistic tool for intervention in cases of atypical numerical development or loss of numerical abilities because of stroke or degenerative illnesses.


Journal of Cognitive Neuroscience | 2009

Optimizing functional accuracy of tms in cognitive studies: A comparison of methods

Alexander T. Sack; Roi Cohen Kadosh; Teresa Schuhmann; Michelle Moerel; Vincent Walsh; Rainer Goebel

Transcranial magnetic stimulation (TMS) is a tool for inducing transient disruptions of neural activity noninvasively in conscious human volunteers. In recent years, the investigative domain of TMS has expanded and now encompasses causal structure–function relationships across the whole gamut of cognitive functions and associated cortical brain regions. Consequently, the importance of how to determine the target stimulation site has increased and a number of alternative methods have emerged. Comparison across studies is precluded because different studies necessarily use different tasks, sites, TMS conditions, and have different goals. Here, therefore, we systematically compare four commonly used TMS coil positioning approaches by using them to induce behavioral change in a single cognitive study. Specifically, we investigated the behavioral impact of right parietal TMS during a number comparison task, while basing TMS localization either on (i) individual fMRI-guided TMS neuronavigation, (ii) individual MRI-guided TMS neuronavigation, (iii) group functional Talairach coordinates, or (iv) 10–20 EEG position P4. We quantified the exact behavioral effects induced by TMS using each approach, calculated the standardized experimental effect sizes, and conducted a statistical power analysis in order to calculate the optimal sample size required to reveal statistical significance. Our findings revealed a systematic difference between the four approaches, with the individual fMRI-guided TMS neuronavigation yielding the strongest and the P4 stimulation approach yielding the smallest behavioral effect size. Accordingly, power analyses revealed that although in the fMRI-guided neuronavigation approach five participants were sufficient to reveal a significant behavioral effect, the number of necessary participants increased to n = 9 when employing MRI-guided neuronavigation, to n = 13 in case of TMS based on group Talairach coordinates, and to n = 47 when applying TMS over P4. We discuss these graded effect size differences in light of the revealed interindividual variances in the actual target stimulation site within and between approaches.


Behavioral and Brain Sciences | 2009

Numerical representation in the parietal lobes: Abstract or not abstract?

Roi Cohen Kadosh; Vincent Walsh

The study of neuronal specialisation in different cognitive and perceptual domains is important for our understanding of the human brain, its typical and atypical development, and the evolutionary precursors of cognition. Central to this understanding is the issue of numerical representation, and the question of whether numbers are represented in an abstract fashion. Here we discuss and challenge the claim that numerical representation is abstract. We discuss the principles of cortical organisation with special reference to number and also discuss methodological and theoretical limitations that apply to numerical cognition and also to the field of cognitive neuroscience in general. We argue that numerical representation is primarily non-abstract and is supported by different neuronal populations residing in the parietal cortex.


Neuron | 2007

Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes

Roi Cohen Kadosh; Kathrin Cohen Kadosh; Amanda L. Kaas; Avishai Henik; Rainer Goebel

It is a commonly held view that numbers are represented in an abstract way in both parietal lobes. This view is based on failures to find differences between various notational representations. Here we show that by using relatively smaller voxels together with an adaptation paradigm and analyzing subjects on an individual basis it is possible to detect specialized numerical representations. The current results reveal a left/right asymmetry in parietal lobe function. In contrast to an abstract representation in the left parietal lobe, the numerical representation in the right parietal lobe is notation dependent and thus includes nonabstract representations. Our results challenge the commonly held belief that numbers are represented solely in an abstract way in the human brain.


Current Biology | 2007

Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing

Roi Cohen Kadosh; Kathrin Cohen Kadosh; Teresa Schuhmann; Amanda L. Kaas; Rainer Goebel; Avishai Henik; Alexander T. Sack

People suffering from developmental dyscalculia encounter difficulties in automatically accessing numerical magnitudes [1-3]. For example, when instructed to attend to the physical size of a number while ignoring its numerical value, dyscalculic subjects, unlike healthy participants, fail to process the irrelevant dimension automatically and subsequently show a smaller size-congruity effect (difference in reaction time between incongruent [e.g., a physically large 2 and a physically small 4] and congruent [e.g., a physically small 2 and a physically large 4] conditions), and no facilitation (neutral [e.g., a physically small 2 and a physically large 2] versus congruent) [3]. Previous imaging studies determined the intraparietal sulcus (IPS) as a central area for numerical processing [4-11]. A few studies tried to identify the brain dysfunction underlying developmental dyscalculia but yielded mixed results regarding the involvement of the left [12] or the right [13] IPS. Here we applied fMRI-guided TMS neuronavigation to disrupt left- or right-IPS activation clusters in order to induce dyscalculic-like behavioral deficits in healthy volunteers. Automatic magnitude processing was impaired only during disruption of right-IPS activity. When using the identical paradigm with dyscalculic participants, we reproduced a result pattern similar to that obtained with nondyscalculic volunteers during right-IPS disruption. These findings provide direct evidence for the functional role of right IPS in automatic magnitude processing.


Current Biology | 2013

Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation

Albert Snowball; Ilias Tachtsidis; Tudor Popescu; Jacqueline Thompson; Margarete Delazer; Laura Zamarian; Tingting Zhu; Roi Cohen Kadosh

Summary Noninvasive brain stimulation has shown considerable promise for enhancing cognitive functions by the long-term manipulation of neuroplasticity [1–3]. However, the observation of such improvements has been focused at the behavioral level, and enhancements largely restricted to the performance of basic tasks. Here, we investigate whether transcranial random noise stimulation (TRNS) can improve learning and subsequent performance on complex arithmetic tasks. TRNS of the bilateral dorsolateral prefrontal cortex (DLPFC), a key area in arithmetic [4, 5], was uniquely coupled with near-infrared spectroscopy (NIRS) to measure online hemodynamic responses within the prefrontal cortex. Five consecutive days of TRNS-accompanied cognitive training enhanced the speed of both calculation- and memory-recall-based arithmetic learning. These behavioral improvements were associated with defined hemodynamic responses consistent with more efficient neurovascular coupling within the left DLPFC. Testing 6 months after training revealed long-lasting behavioral and physiological modifications in the stimulated group relative to sham controls for trained and nontrained calculation material. These results demonstrate that, depending on the learning regime, TRNS can induce long-term enhancement of cognitive and brain functions. Such findings have significant implications for basic and translational neuroscience, highlighting TRNS as a viable approach to enhancing learning and high-level cognition by the long-term modulation of neuroplasticity.


Current Biology | 2012

The neuroethics of non-invasive brain stimulation

Roi Cohen Kadosh; Neil Levy; Jacinta O'Shea; Nicholas Shea; Julian Savulescu

Transcranial direct current stimulation (TDCS) is a brain stimulation tool that is portable, painless, inexpensive, apparently safe, and with potential long-term efficacy. Recent results obtained from TDCS experiments offer exciting possibilities for the enhancement and treatment of normal or impaired abilities, respectively. We discuss new neuroethical problems that have emerged from the usage of TDCS, and also focus on one of the most likely future applications of TDCS: enhancing learning and cognition in children with typical and atypical development.


Frontiers in Systems Neuroscience | 2014

Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation

Beatrix Krause; Roi Cohen Kadosh

A current issue in the research of augmentation of brain functions using transcranial electrical stimulation (tES) is the diversity and inconsistency in outcome results. Similar studies often report different results, depending on the parameters and tasks used. Such inconsistencies have led to significant doubts about the efficacy of the method in the broader scientific community, despite its promising potential for patient recovery and treatment. Evidence on the large variability in individual cortical excitability and response to tES suggests that stimulation may affect individuals differently, depending on the subject’s age, gender, brain state, hormonal levels, and pre-existing regional excitability. Certain factors might even lead to the reversal of polarity-dependent effects, and therefore have crucial implications for neurorehabilitation and cognitive enhancement. Research paradigms may have to be refined in the future to avoid the confounding effects of such factors.


Trends in Cognitive Sciences | 2007

Can synaesthesia research inform cognitive science

Roi Cohen Kadosh; Avishai Henik

The renaissance of synaesthesia research has produced many insights regarding the aetiology and mechanisms that might underlie this intriguing phenomenon, which abnormally binds features between and within modalities. Synaesthesia is interesting in its own right, but whether it contributes to our knowledge of neurocognitive systems that underlie non-synaesthete experience is an open question. In this review, we show that results from the field of synaesthesia can constrain cognitive theories in numerical cognition, automaticity, crossmodal interaction and awareness. Therefore, research of synaesthesia provides a unique window into other domains of cognitive neuroscience. We conclude that the study of synaesthesia could advance our understanding of the normal and abnormal human brain and cognition.


Frontiers in Human Neuroscience | 2013

The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance?

Beatrix Krause; Javier Márquez-Ruiz; Roi Cohen Kadosh

Transcranial direct current stimulation (tDCS) is a promising tool for cognitive enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements. We suggest that part of the mechanism of action of tDCS can be explained by non-invasive modulations of the E/I balance.

Collaboration


Dive into the Roi Cohen Kadosh's collaboration.

Top Co-Authors

Avatar

Avishai Henik

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Vincent Walsh

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Gevers

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge