Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roine Strandberg is active.

Publication


Featured researches published by Roine Strandberg.


Journal of Animal Ecology | 2014

When and where does mortality occur in migratory birds? Direct evidence from long‐term satellite tracking of raptors

Raymond H. G. Klaassen; Mikael Hake; Roine Strandberg; Ben J. Koks; Christiane Trierweiler; Klaus-Michael Exo; Franz Bairlein; Thomas Alerstam

Information about when and where animals die is important to understand population regulation. In migratory animals, mortality might occur not only during the stationary periods (e.g. breeding and wintering) but also during the migration seasons. However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence. Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry. We show that mortality rate was about six times higher during migration seasons than during stationary periods. However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods. Nevertheless, more than half of the annual mortality occurred during migration. We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe. Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants. We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects).


Royal Society of London. Proceedings B. Biological Sciences; 279(1730), pp 1008-1016 (2012) | 2012

The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration

Anders P. Tøttrup; Raymond H. G. Klaassen; Roine Strandberg; Kasper Thorup; Mikkel Willemoes Kristensen; Peter Søgaard Jørgensen; James W. Fox; Vsevolod Afanasyev; Carsten Rahbek; Thomas Alerstam

The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio, a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d–1) than during spring (233 km d–1). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.


Biology Letters | 2011

Individuality in bird migration: routes and timing

Yannis Vardanis; Raymond H. G. Klaassen; Roine Strandberg; Thomas Alerstam

The exploration of animal migration has entered a new era with individual-based tracking during multiple years. Here, we investigated repeated migratory journeys of a long-distance migrating bird, the marsh harrier Circus aeruginosus, in order to analyse the variation within and between individuals with respect to routes and timing. We found that there was a stronger individual repeatability in time than in space. Thus, the annual timing of migration varied much less between repeated journeys of the same individual than between different individuals, while there was considerable variation in the routes of the same individual on repeated journeys. The overall contrast in repeatability between time and space was unexpected and may be owing to strong endogenous control of timing, while short-term variation in environmental conditions (weather and habitat) might promote route flexibility. The individual variation in migration routes indicates that the birds navigate mainly by other means than detailed route recapitulation based on landmark recognition.


Biology Letters | 2010

How hazardous is the Sahara Desert crossing for migratory birds? Indications from satellite tracking of raptors.

Roine Strandberg; Raymond H. G. Klaassen; Mikael Hake; Thomas Alerstam

We investigated the risk associated with crossing the Sahara Desert for migrating birds by evaluating more than 90 journeys across this desert by four species of raptors (osprey Pandion haliaetus, honey buzzard Pernis apivorus, marsh harrier Circus aeruginosus and Eurasian hobby Falco subbuteo) recorded by satellite telemetry. Forty per cent of the crossings included events of aberrant behaviours, such as abrupt course changes, slow travel speeds, interruptions, aborted crossings followed by retreats from the desert and failed crossings due to death, indicating difficulties for the migrants. The mortality during the Sahara crossing was 31 per cent per crossing attempt for juveniles (first autumn migration), compared with only 2 per cent for adults (autumn and spring combined). Mortality associated with the Sahara passage made up a substantial fraction (up to about half for juveniles) of the total annual mortality, demonstrating that this passage has a profound influence on survival and fitness of migrants. Aberrant behaviours resulted in late arrival at the breeding grounds and an increased probability of breeding failure (carry-over effects). This study also demonstrates that satellite tracking can be a powerful method to reveal when and where birds are exposed to enhanced risk and mortality during their annual cycles.


Science | 2012

Drought in Africa Caused Delayed Arrival of European Songbirds

Anders P. Tøttrup; Raymond H. G. Klaassen; Mikkel Willemoes Kristensen; Roine Strandberg; Yannis Vardanis; Åke Lindström; Carsten Rahbek; Thomas Alerstam; Kasper Thorup

A severe drought in the Horn of Africa delayed the spring arrival in Europe of two migratory species. Despite an overall advancement in breeding area arrival, one of the latest spring arrivals in northwest Europe since 1950 of several trans-Saharan songbird species occurred in 2011. Year-round tracking of red-backed shrikes and thrush nightingales revealed that the cause of the delay was a prolongation of stopover time during spring migration at the Horn of Africa, which was affected by extreme drought. Our results help to establish a direct link at the individual level between changes in local climate during migration and arrival and breeding condition in Europe thousands of kilometers further north.


Proceedings of the Royal Society B: Biological Sciences; 278, pp 1339-1346 (2011) | 2011

Geographical and temporal flexibility in the response to crosswinds by migrating raptors

Raymond H. G. Klaassen; Mikael Hake; Roine Strandberg; Thomas Alerstam

Wind and ocean currents may potentially have important effects on travelling animals, as an animal which does not respond to lateral flow will be drifted from its intended direction of movement. By analysing daily movements of migrating ospreys Pandion haliaetus and marsh harriers Circus aeruginosus, as recorded by satellite telemetry, in relation to global wind data, we showed that these raptors allow on average 47 per cent drift. Furthermore, our analyses revealed significant geographical and temporal variation in the response to crosswinds. During some parts of the migration, the birds drifted and in other parts they compensated or even overcompensated. In some regions, the response of marsh harriers depended on the wind direction. They drifted when the wind came from one side and (over)compensated when the wind came from the opposite side, and this flexible response was different in different geographical regions. These results suggest that migrating raptors modulate their response to crosswinds at different places and times during their travels and show that individual birds use a much more varied repertoire of behavioural responses to wind than hitherto assumed. Our results may also explain why contrasting and variable results have been obtained in previous studies of the effect of wind on bird migration.


PLOS ONE | 2012

Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies

Ugo Mellone; Raymond H. G. Klaassen; Clara García-Ripollés; Rubén Limiñana; Pascual López-López; Diego Pavón; Roine Strandberg; Vicente Urios; Michalis Vardakis; Thomas Alerstam

Background Performance of migrating birds can be affected by a number of intrinsic and extrinsic factors like morphology, meteorological conditions and migration strategies. We compared travel speeds of four raptor species during their crossing of the Sahara desert. Focusing the analyses on this region allows us to compare different species under equivalent conditions in order to disentangle which factors affect migratory performance. Methodology/Principal Finding We tracked raptors using GPS satellite transmitters from Sweden, Spain and Italy, and evaluated their migratory performance at both an hourly and a daily scale. Hourly data (flight speed and altitude for intervals of two hours) were analyzed in relation to time of day, species and season, and daily data (distance between roosting sites) in relation to species, season, day length and tailwind support. Conclusions/Significance Despite a clear variation in morphology, interspecific differences were generally very small, and did only arise in spring, with long-distance migrants (>5000 km: osprey and Western marsh-harrier) being faster than species that migrate shorter distances (Egyptian vulture and short-toed eagle). Our results suggest that the most important factor explaining hourly variation in flight speed is time of day, while at a daily scale, tailwind support is the most important factor explaining variation in daily distance, raising new questions about the consequences of possible future changes in worldwide wind patterns.


Ardea | 2008

Complex timing of Marsh Harrier Circus aeruginosus migration due to pre- and post-migratory movements

Roine Strandberg; Raymond H. G. Klaassen; Mikael Hake; Patrik Olofsson; Kasper Thorup; Thomas Alerstam

We tracked three juvenile and 14 adult Marsh Harriers Circus aeruginosus from southern Sweden via satellite to investigate migration strategies. Four individuals were tracked for at least two years. All three juveniles and four of the adults made west-oriented pre-migratory movements well before the onset of autumn migration, and trans-Saharan migrants visited post-migratory stopover areas in tropical Africa. By these movements, the harriers presumably exploit short-term regional variation in food abundance. Autumn and spring migration occurred in a relatively narrow corridor, without distinct differences between sexes in timing, speed, distance, and duration of migration, except that females tended to migrate faster in spring than did males. Juveniles migrated shorter distances than adults, and migration speeds were lower. Spring migration was similar to autumn migration in terms of speed and duration. Juveniles did not cross the Sahara Desert and three birds, one female and two juveniles, wintered in Europe, which is in accordance with a recent increase in the number of (juvenile) Marsh Harriers wintering in northwestern Europe. All birds that crossed the Sahara wintered in tropical West Africa. Harriers showed site fidelity to breeding, wintering and stopover areas. The overall migration speed of Marsh Harriers was similar to that of Ospreys Pandion haliaetus and Honey Buzzards Pernis apivorus, two other trans-Saharan migrants. Ospreys use fly-and-forage migration to promote resulting speed, whereas Honey Buzzards are particularly apt to exploit thermal soaring. How Marsh Harriers balance foraging versus travelling to accomplish their rapid migration speeds remains to be resolved.


PLOS ONE | 2014

Narrow-Front Loop Migration in a Population of the Common Cuckoo Cuculus canorus, as Revealed by Satellite Telemetry.

Mikkel Willemoes; Roine Strandberg; Raymond H. G. Klaassen; Anders P. Tøttrup; Yannis Vardanis; Paul W. Howey; Kasper Thorup; Martin Wikelski; Thomas Alerstam

Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8), to wintering sites in south-western Central Africa (n = 6) and back to the breeding grounds (n = 3). Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival). Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study.


Royal Society of London. Proceedings B. Biological Sciences; 274(1625), pp 2523-2530 (2007) | 2007

A polar system of intercontinental bird migration.

Thomas Alerstam; Johan Bäckman; Gudmundur A. Gudmundsson; Anders Hedenström; Sara S. Henningsson; Håkan Karlsson; Mikael Rosén; Roine Strandberg

Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 64° N in Bering Strait up to latitude 75° N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian–American bird migration system in a wide Arctic sector between longitudes 110° E and 130° W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3–5 km). Great circle orientation provided a significantly better fit with observed flight directions at 20 different sites and areas than constant geographical compass orientation. The long flights over the sea spanned 40–80 degrees of longitude, corresponding to distances and durations of 1400–2600 km and 26–48 hours, respectively. The birds continued from this eastward migration system over the Arctic Ocean into several different flyway systems at the American continents and the Pacific Ocean. Minimization of distances between tundra breeding sectors and northerly stopover sites, in combination with the Beringia glacial refugium and colonization history, seemed to be important for the evolution of this major polar bird migration system.

Collaboration


Dive into the Roine Strandberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Hake

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge