Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland A. Müller is active.

Publication


Featured researches published by Roland A. Müller.


Bioresource Technology | 2014

Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland.

Johannes Boog; Jaime Nivala; Thomas Aubron; Scott Wallace; Manfred van Afferden; Roland A. Müller

In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.5 d) handling primary treated domestic sewage was conducted. One system (VA-i) was set to intermittent aeration while the other was aerated continuously (VAp-c). Intermittent aeration was provided to VA-i in an 8 h on/4 h off pattern. The intermittently aerated wetland, VA-i, was observed to have 70% less nitrate nitrogen mass outflow than the continuously aerated wetland, VAp-c. Intermittent aeration was shown to increase treatment performance for TN while saving 33% of running energy cost for aeration. Parallel tracer experiments in the two wetlands showed hydraulic characteristics similar to one Continuously Stirred Tank Reactor (CSTR). Intermittent aeration did not significantly affect the hydraulic functioning of the system. Hydraulic efficiencies were 78% for VAp-c and 76% for VA-i.


Water Research | 2011

Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems

Manfred van Afferden; K. Z. Rahman; Peter Mosig; Cecilia De Biase; Martin Thullner; Sascha E. Oswald; Roland A. Müller

Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF+PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970±816 and 13,966±1998 μg L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2) d(-1), the mean concentrations of MTBE and benzene were found to be 550±133 and 65±123 μg L(-1) in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 49±77 and 0.5±0.2 μg L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 μg L(-1) for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF+PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (∼100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5±10 and 0.6±0.2 μg L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.


Environmental Science & Technology | 2012

Correlation of community dynamics and process parameters as a tool for the prediction of the stability of wastewater treatment.

Susanne Günther; Christin Koch; Thomas Hübschmann; Isolde Röske; Roland A. Müller; Thomas Bley; Hauke Harms; Susann Müller

Wastewater treatment often suffers from instabilities and the failure of specific functions such as biological phosphorus removal by polyphosphate accumulating organisms. Since most of the microorganisms involved in water clarification are unknown it is challenging to operate the process accounting for the permanent varying abiotic parameters and the complex composition and unrevealed metabolic capacity of a wastewater microbial community. Fulfilling the demands for water quality irrespective of substrate inflow conditions may emit severe problems if the limited management resources of municipal wastewater treatment plants are regarded. We used flow cytometric analyses of cellular DNA and polyphosphate to create patterns mirroring dynamics in community structure. These patterns were resolved in up to 15 subclusters, the presence and abundances of which correlated with abiotic data. The study used biostatistics to determine the kind and strength of the correlation. Samples investigated were obtained from a primary clarifier and two activated sludge basins. The stability of microbial community structure was found to be high in the basins and low in the primary clarifier. Despite major abiotic changes certain subcommunities were dominantly present (up to 80% stability), whereas others emerged only sporadically (down to 3% stability, both according to equivalence testing). Additionally, subcommunities of diagnostic value were detected showing positive correlation with substrate influxes. For instance blackwater (r(s) = 0.5) and brewery inflow (both r(s) = 0.6) were mirrored by increases in cell abundances in subclusters 1 and 6 as well as 4 and 8, respectively. Phosphate accumulation was obviously positively correlated with nitrate (r(s) = 0.4) and the presence of denitrifying organisms (Rhodacyclaceae). Various other correlations between community structure and abiotic parameters were apparent. The bacterial composition of certain subcommunities was determined by cell sorting and phylogenetic tools like T-RFLP. In essence, we developed a monitoring tool which is quick, cheap and causal in its interpretation. It will make laborious PCR based technique less obligatory as it allows reliable process monitoring and control in wastewater treatment plants.


Water Research | 2017

Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators

Stefanie Kahl; Jaime Nivala; Manfred van Afferden; Roland A. Müller; Thorsten Reemtsma

Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter.


Applied Biochemistry and Biotechnology | 2016

Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands: Effects of Sample Preparation

Mark Button; Kela P. Weber; Jaime Nivala; Thomas Aubron; Roland A. Müller

Community-level physiological profiling (CLPP) using BIOLOG® EcoPlates™ has become a popular method for characterizing and comparing the functional diversity, functional potential, and metabolic activity of heterotrophic microbial communities. The method was originally developed for profiling soil communities; however, its usage has expanded into the fields of ecotoxicology, agronomy, and the monitoring and profiling of microbial communities in various wastewater treatment systems, including constructed wetlands for water pollution control. When performing CLPP on aqueous samples from constructed wetlands, a wide variety of sample characteristics can be encountered and challenges may arise due to excessive solids, color, or turbidity. The aim of this study was to investigate the impacts of different sample preparation methods on CLPP performed on a variety of aqueous samples covering a broad range of physical and chemical characteristics. The results show that using filter paper, centrifugation, or settling helped clarify samples for subsequent CLPP analysis, however did not do so as effectively as dilution for the darkest samples. Dilution was able to provide suitable clarity for the darkest samples; however, 100-fold dilution significantly affected the carbon source utilization patterns (CSUPs), particularly with samples that were already partially or fully clear. Ten-fold dilution also had some effect on the CSUPs of samples which were originally clear; however, the effect was minimal. Based on these findings, for this specific set of samples, a 10-fold dilution provided a good balance between ease of use, sufficient clarity (for dark samples), and limited effect on CSUPs. The process and findings outlined here can hopefully serve future studies looking to utilize CLPP for functional analysis of microbial communities and also assist in comparing data from studies where different sample preparation methods were utilized.


Waste Management | 2015

Innovative test method for the estimation of the foaming tendency of substrates for biogas plants

Lucie Moeller; Frank Eismann; Daniel Wißmann; Hans-Joachim Nägele; Simon Zielonka; Roland A. Müller; Andreas Zehnsdorf

Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.


Environmental Science: Water Research & Technology | 2018

Application of cell-based bioassays to evaluate treatment efficacy of conventional and intensified treatment wetlands

Jaime Nivala; Peta A. Neale; Tobias Haasis; Stefanie Kahl; Roland A. Müller; Thorsten Reemtsma; Rita Schlichting; Beate I. Escher

Constructed wetlands are commonly used for wastewater treatment when centralized sewage treatment is not feasible. Many studies have focused on the removal of micropollutants by treatment wetlands, but little is known about how well they can remove biological activity. Here we studied the removal efficacy of conventional and intensified treatment wetland designs using both chemical analysis of conventional wastewater parameters and treatment indicator chemicals (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, carbamazepine) as well as a panel of in vitro bioassays indicative of different stages of cellular toxicity pathways, such as xenobiotic metabolism, receptor-mediated effect and adaptive stress responses. Water samples collected before and after seven treatment wetlands were compared against the adjacent municipal wastewater treatment plant. The intensified treatment wetlands generally removed micropollutants and biological activity to a greater extent than the conventional wastewater treatment plant, whereas the conventional horizontal subsurface flow wetland showed poor removal of all indicators. Carbamazepine was not well removed by any of the studied systems as expected from reported recalcitrance in aerobic environments. Estrogenic activity, which is a commonly used biological endpoint indicator for wastewater treatment, was removed very well by the intensified wetlands (97 to 99.5%) with similar or slightly lower removal efficacy for all other biological endpoints. The results highlight the importance of applying indicator bioassays complementary to indicator chemical analysis for monitoring treatment efficacy. The high removal efficacy of biological effects as a measure of total effect-scaled concentrations of chemicals provides further support to the use of intensified wetlands for wastewater treatment.


Archives of Agronomy and Soil Science | 2018

Labile water soluble components govern the short-term microbial decay of hydrochar from sewage sludge

Marc Breulmann; Katrin Kuka; Manfred van Afferden; François Buscot; Christoph Fühner; Roland A. Müller; Elke Schulz

ABSTRACT Due to higher proportions of labile carbon (C) compounds the suitability of biochar produced by hydrothermal carbonization (HTC) for C sequestration is questionable. We hypothesized that pre-treatment with water would reduce the biological decay of hydrochar from sewage sludge. Unwashed and washed feedstock and hydrochar were incubated in a short-term experiment. The kinetics of the biological decomposition of the materials was calculated on the basis of a double exponential model and the C sequestration potential using the CANDY Carbon Balance (CCB) model. Biological decomposition of the carbonized materials was governed by the percentage of labile C compounds. Mean residence time of a fast (MRTfast) and slow decay pool (MRTslow) of unwashed hydrochars varied clearly (MRTfast: 0.8 – 5.0 months and the MRTslow: 5.0–18.6 months). The pre-treatment with water removed labile hydrochar C and reduced the biological accessibility. MRTfast and MRTslow was increased by intensive washings (MRTfast: 5.0–7.4 months and the MRTslow: 14.9 months). High synthesis coefficients suggest that hydrochar C was humified and transferred into stabilized SOC. The results clearly show that once adsorbed components were eliminated, and as compared to pyrolysed biochar hydrochar from sewage sludge may also be useful for soil C sequestration.


Science of The Total Environment | 2017

Resilience of carbon and nitrogen removal due to aeration interruption in aerated treatment wetlands

Johannes Boog; Jaime Nivala; Thomas Aubron; Sibylle Mothes; Manfred van Afferden; Roland A. Müller

Treatment wetlands have long been used for domestic and industrial wastewater treatment. In recent decades, treatment wetland technology has evolved and now includes intensified designs such as aerated treatment wetlands. Aerated treatment wetlands are particularly dependent on aeration, which requires reliable air pumps and, in most cases, electricity. Whether aerated treatment wetlands are resilient to disturbances such as an aeration interruption is currently not well known. In order to investigate this knowledge gap, we carried out a pilot-scale experiment on one aerated horizontal flow wetland and one aerated vertical flow wetland under warm (Twater>17°C) and cold (Twater<10°C) weather conditions. Both wetlands were monitored before, during and after an aeration interruption of 6d by taking grab samples of the influent and effluent, as well as pore water. The resilience of organic carbon and nitrogen removal processes in the aerated treatment wetlands depended on system design (horizontal or vertical flow) and water temperature. Organic carbon and nitrogen removal for both systems severely deteriorated after 4-5d of aeration interruption, resulting in effluent water quality similar to that expected from a conventional horizontal sub-surface flow treatment wetland. Both experimental aerated treatment wetlands recovered their initial treatment performance within 3-4d at Twater>17°C (warm weather) and within 6-8d (horizontal flow system) and 4-5d (vertical flow system) at Twater<10°C (cold weather). In the vertical flow system, DOC, DN and NH4-N removal were less affected by low water temperatures, however, the decrease of DN removal in the vertical flow aerated wetland at Twater>17°C was twice as high as in the horizontal flow aerated wetland. The quick recovery of treatment performance highlights the benefits of aerated treatment wetlands as resilient wastewater treatment technologies.


Archives of Agronomy and Soil Science | 2018

Hydrochars derived from sewage sludge: effects of pre-treatment with water on char properties, phytotoxicity and chemical structure

Marc Breulmann; Elke Schulz; Manfred van Afferden; Roland A. Müller; Christoph Fühner

ABSTRACT Large amounts of labile compounds are adsorbed to the surface of chars produced by hydrothermal carbonization (HTC). The aim of this study was to characterize the core and adsorbed fractions of hydrochars and to gain knowledge about the possibility to remove phytotoxic compounds by washings with water. Chars were produced by HTC of sewage sludge at different temperatures (180 – 200 °C) and over different periods of time (4 – 8 h). For comparison one pyrolysis char produced by thermocatalytic low temperature conversion (LTC) at 400 °C for 1 h was included in the study. The chars and their feedstocks were treated varying the duration (1 x 15, 1 × 30 and 1 × 60 min) and number (2 x 60 and 3 × 60 min) of washings. Physicochemical properties, including the molecular structure of the test materials, and their effects on germination and plant growth were analysed. Element concentrations and phytotoxic effects were reduced and the number of washings had a stronger effect than their length of time. Intensive washings with water reduced the hydrochars’ portion of biodegradable compounds significantly. However, also plant available nutrients were lost by washing with water, decreasing the value of hydrochars as a soil amendment.

Collaboration


Dive into the Roland A. Müller's collaboration.

Top Co-Authors

Avatar

Manfred van Afferden

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Andreas Zehnsdorf

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Jaime Nivala

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Peter Kuschk

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Andreas Aurich

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Lucie Moeller

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Arndt Wiessner

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

K. Z. Rahman

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Martina Holz

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Matthias Kästner

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge