Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Dersch is active.

Publication


Featured researches published by Roland Dersch.


PLOS ONE | 2011

Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

Markus Dietmar Schofer; Philip P. Roessler; Jan Schaefer; Christina Theisen; Sonja Schlimme; Johannes T. Heverhagen; Maximilian Voelker; Roland Dersch; Seema Agarwal; Susanne Fuchs-Winkelmann; Jürgen R. J. Paletta

Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.


BMC Biotechnology | 2009

Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle

Justus P. Beier; Dorothee Klumpp; Markus Rudisile; Roland Dersch; Joachim H. Wendorff; Oliver Bleiziffer; Andreas Arkudas; Elias Polykandriotis; Raymund E. Horch; Ulrich Kneser

BackgroundTissue engineering of vascularised skeletal muscle is a promising method for the treatment of soft tissue defects in reconstructive surgery. In this study we explored the characteristics of novel collagen and fibrin matrices for skeletal muscle tissue engineering. We analyzed the characteristics of newly developed hybrid collagen-I-fibrin-gels and collagen nanofibers as well as collagen sponges and OPLA®-scaffolds. Collagen-fibrin gels were also tested with genipin as stabilizing substitute for aprotinin.ResultsWhereas rapid lysis and contraction of pure collagen I- or fibrin-matrices have been great problems in the past, the latter could be overcome by combining both materials. Significant proliferation of cultivated myoblasts was detected in collagen-I-fibrin matrices and collagen nanofibers. Seeding cells on parallel orientated nanofibers resulted in strongly aligned myoblasts. In contrast, common collagen sponges and OPLA®-scaffolds showed less cell proliferation and in collagen sponges an increased apoptosis rate was evident. The application of genipin caused deleterious effects on primary myoblasts.ConclusionCollagen I-fibrin mixtures as well as collagen nanofibers yield good proliferation rates and myogenic differentiation of primary rat myoblasts in vitro In addition, parallel orientated nanofibers enable the generation of aligned cell layers and therefore represent the most promising step towards successful engineering of skeletal muscle tissue.


Australian Journal of Chemistry | 2007

Electrospinning of Nanofibres: Towards New Techniques, Functions, and Applications

Roland Dersch; Martin Graeser; Andreas Greiner; Joachim H. Wendorff

Nanofibres, core–shell nanofibres, as well as hollow nanofibres and nanotubes based on polymers, serve as a platform for a broad range of applications as filters, textiles, in photonics, sensors, catalysis, or in medicine and pharmacy. Such nanoobjects become available by techniques such as the well-known electrospinning and the more recently developed co-electrospinning of nanofibres. Electrospinning takes place in the latter case by two or more concentrically arranged dies that yield core–shell fibres or fibres with droplet-like inclusions arranged along the centre of the fibres, where the inclusions are composed of polymers, low-molar-mass synthetic functional units, or molecules of biological origins such as proteins. Furthermore, template methods have been developed using electrospun nanofibres or a porous substrate, which yield core–shell fibres of complex architectures, with or without gradient structures or hollow nanofibres and nanotubes. These techniques are not restricted to polymers of synthetic and natural origin, but are able – based on precursor substances – to deliver nanofibres and nanotubes also composed of metals, glasses, and ceramics. Furthermore, these preparation techniques allow the direct introduction into these nanostructures of specific functional compounds such as semiconductor or catalytic nanoparticles and chromophores, in addition to enzymes, proteins, microorganisms, etc. during the preparation process in a very gentle way. Of particular interest are such nanostructures in medicine and pharmacy, for instance, as scaffolds for tissue engineering or as drug-delivery systems for tumour therapy.


The Scientific World Journal | 2008

Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

Markus Dietmar Schofer; Susanne Fuchs-Winkelmann; Christian Gräbedünkel; Christina Wack; Roland Dersch; Markus Rudisile; Joachim H. Wendorff; Andreas Greiner; Jürgen R. J. Paletta; Ulrich Boudriot

The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form.


Bioresource Technology | 2010

Preparation of nanofibers containing the microalga Spirulina (Arthrospira)

Michele Greque de Morais; Christopher Stillings; Roland Dersch; Markus Rudisile; Patricia Pranke; Jorge Alberto Vieira Costa; Joachim H. Wendorff

Spirulina is a microalga which offers biological functions highly favorable for tissue engineering. Highly porous scaffolds can be produced by electrospinning containing biomass of Spirulina. The goal of this contribution was therefore to establish spinning conditions allowing to produce well defined nanofibers with diameters down to about 100 nm and to produce nanofibers with various concentration of the biomass for subsequent studies in tissue engineering applications. The experimental results reveal that the blend system PEO/biomass is behaved surprisingly well in electrospinning. Very thin bead-free nanofibers with diameters of about 110 nm can be produced for different biomass contents of up to 67 wt.% of the nanofibers and for PEO concentrations in the spinning solution well below 4 wt.%. These results suggest to us the use of the biomass containing nanofibers as extracellular matrices for stem cell culture and future treatment of spinal chord injury.


Biomedizinische Technik | 2004

Electrospun poly-l-lacticle nanofibres as scaffolds for tissue engineering

Ulrich Boudriot; Roland Dersch; Goetz B; Griss P; Andreas Greiner; Joachim H. Wendorff

Abstract Tissue Engineering stellt eine viel versprechende Möglichkeit dar, strukturelle und funktionelle Defekte in menschlichen Gewebe- und Organsystemen zu therapieren. Das spezielle Wachstumsverhalten von Zellen macht den Einsatz einer Gerüststruktur notwendig, da nur auf diesem Weg ein dreidimensionales Wachstum der Zellen erreicht werden kann. Ziel der Studie war es, die prinzipielle Möglichkeit des Einsatzes einer elektrogesponnenen Matrix aus Poly-(l-Laktid) Nanofasern als Trägermaterial für Tissue Engineering Anwendungen zu prüfen. Zu diesem Zweck wurden humane Osteosarkomzellen (MG63) auf der Matrix über 14 Tage kultiviert. Die Zellen zeigten eine deutliche Wachstumstendenz entlang der Nanofasern und keine Zeichen der Zelldegeneration oder des Zelltodes. Aufgrund ihrer Struktur stellen elektrogesponnene Nanofasern eine ideale Matrix für Tissue Engineering Applikationen dar. Elektrogesponnene Nanofasern können mit Wachstumsfaktoren, Medikamenten o.ä. dotiert werden und sind gleichermaßen biokompatibel und resorbierbar. Tissue engineering is a promising tool for treating structural and functional defects in bone and cartilage. To provide optimal conditions for three-dimensional cell growth the use of a scaffold is necessary. The aim of the study was to test the potential application of an electrospun poly (l-lactide)-nanostructured scaffold as a matrix for tissue engineering. Matrices were seeded with human osteosarcoma MG-63 cells and cultivated for 14 days. Cells showed a clear preference for growth along the nanofibres, and demonstrated no signs of degeneration or apoptosis. The fine structure of electrospun nanofibres makes them an ideal scaffold for tissue engineering, in particular for cartilage repair. They can be “doped” with growth factors, medications, etc., and are both biocompatible and biodegradable.


International Journal of Biological Macromolecules | 2011

A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane.

Rosane Michele Duarte Soares; Vanessa Laís Patzer; Roland Dersch; Joachim H. Wendorff; Nádya Pesce da Silveira; Patricia Pranke

The aim of this work has been to elaborate well defined gliadin nanofibers with incorporation of inorganic molecules, such as polyhedral oligomeric silsesquioxane (POSS). Nanofibers were obtained by electrospinning processing, controlling the relevant parameters such as tip-to-collector distance, voltage and feed rate. The fiber mats were characterized by SEM, confocal images, DSC, viscosity, FTIR and conductivimetry analysis. FTIR spectra showed characteristic absorption bands related to the presence of POSS-NH(2) within the matrices. SEM micrographs showed that gliadin fibers decreased their dimensions as the amount of POSS-NH(2) increased in the spinning solution. The electrical conductivity of gliadin solutions diminished as the concentration of POSS-NH(2) was increased. Besides, confocal micrographs revealed that POSS-NH(2) might be dispersed as nanocrystals into gliadin and gluten fibers. The dimension of gluten nanofibers was also affected by the POSS-NH(2) concentration, but conversely, this dependence was not proportional to the POSS-NH(2) amount. Somehow, the interaction between gliadin and POSS-NH(2) in aqueous TFE affected the solution viscosity and, as a consequence, higher jet instabilities and thinner fiber dimensions were obtained.


BioMed Research International | 2015

Biofunctionalized Nanofibers Using Arthrospira (Spirulina) Biomass and Biopolymer

Michele Greque de Morais; Christopher Stillings; Roland Dersch; Markus Rudisile; Patricia Pranke; Jorge Alberto Vieira Costa; Joachim H. Wendorff

Electrospun nanofibers composed of polymers have been extensively researched because of their scientific and technical applications. Commercially available polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHB-HV) copolymers are good choices for such nanofibers. We used a highly integrated method, by adjusting the properties of the spinning solutions, where the cyanophyte Arthrospira (formally Spirulina) was the single source for nanofiber biofunctionalization. We investigated nanofibers using PHB extracted from Spirulina and the bacteria Cupriavidus necator and compared the nanofibers to those made from commercially available PHB and PHB-HV. Our study assessed nanofiber formation and their selected thermal, mechanical, and optical properties. We found that nanofibers produced from Spirulina PHB and biofunctionalized with Spirulina biomass exhibited properties which were equal to or better than nanofibers made with commercially available PHB or PHB-HV. Our methodology is highly promising for nanofiber production and biofunctionalization and can be used in many industrial and life science applications.


Angewandte Chemie | 2017

Bottom-Up Meets Top-Down: Patchy Hybrid Nonwovens as an Efficient Catalysis Platform

Judith Schöbel; Matthias Burgard; Christian Hils; Roland Dersch; Martin Dulle; Kirsten Volk; Matthias Karg; Andreas Greiner; Holger Schmalz

Heterogeneous catalysis with supported nanoparticles (NPs) is a highly active field of research. However, the efficient stabilization of NPs without deteriorating their catalytic activity is challenging. By combining top-down (coaxial electrospinning) and bottom-up (crystallization-driven self-assembly) approaches, we prepared patchy nonwovens with functional, nanometer-sized patches on the surface. These patches can selectively bind and efficiently stabilize gold nanoparticles (AuNPs). The use of these AuNP-loaded patchy nonwovens in the alcoholysis of dimethylphenylsilane led to full conversion under comparably mild conditions and in short reaction times. The absence of gold leaching or a slowing down of the reaction even after ten subsequent cycles manifests the excellent reusability of this catalyst system. The flexibility of the presented approach allows for easy transfer to other nonwoven supports and catalytically active NPs, which promises broad applicability.


The Scientific World Journal | 2009

Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

Markus Dietmar Schofer; Susanne Fuchs-Winkelmann; Christina Wack; Markus Rudisile; Roland Dersch; Irini Leifeld; Joachim H. Wendorff; Andreas Greiner; Jürgen R. J. Paletta; Ulrich Boudriot

Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers.

Collaboration


Dive into the Roland Dersch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Pranke

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge