Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland H. Stimson is active.

Publication


Featured researches published by Roland H. Stimson.


The Journal of Clinical Endocrinology and Metabolism | 2010

Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients.

Wiebke Arlt; Debbie Willis; Sarah H. Wild; Nils Krone; Emma J. Doherty; Stefanie Hahner; Thang S. Han; Paul V. Carroll; G. S. Conway; D. Aled Rees; Roland H. Stimson; Brian R. Walker; John M. Connell; Richard Ross

Context: No consensus exists for management of adults with congenital adrenal hyperplasia (CAH) due to a paucity of data from cohorts of meaningful size. Objective: Our objective was to establish the health status of adults with CAH. Design and Setting: We conducted a prospective cross-sectional study of adults with CAH attending specialized endocrine centers across the United Kingdom. Patients: Participants included 203 CAH patients (199 with 21-hydroxylase deficiency): 138 women, 65 men, median age 34 (range 18–69) years. Main Outcome Measures: Anthropometric, metabolic, and subjective health status was evaluated. Anthropometric measurements were compared with Health Survey for England data, and psychometric data were compared with appropriate reference cohorts. Results: Glucocorticoid treatment consisted of hydrocortisone (26%), prednisolone (43%), dexamethasone (19%), or a combination (10%), with reverse circadian administration in 41% of patients. Control of androgens was highly variable with a normal serum androstenedione found in only 36% of patients, whereas 38% had suppressed levels suggesting glucocorticoid overtreatment. In comparison with Health Survey for England participants, CAH patients were significantly shorter and had a higher body mass index, and women with classic CAH had increased diastolic blood pressure. Metabolic abnormalities were common, including obesity (41%), hypercholesterolemia (46%), insulin resistance (29%), osteopenia (40%), and osteoporosis (7%). Subjective health status was significantly impaired and fertility compromised. Conclusions: Currently, a minority of adult United Kingdom CAH patients appear to be under endocrine specialist care. In the patients studied, glucocorticoid replacement was generally nonphysiological, and androgen levels were poorly controlled. This was associated with an adverse metabolic profile and impaired fertility and quality of life. Improvements in the clinical management of adults with CAH are required.


Nature Cell Biology | 2014

Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source

You-Ying Chau; Roberto Bandiera; Alan Serrels; Ofelia M. Martínez-Estrada; Wei Qing; Martin Lee; Joan Slight; Anna Thornburn; Rachel L. Berry; Sophie McHaffie; Roland H. Stimson; Brian R. Walker; Ramón Muñoz Chápuli; Andreas Schedl; Nicholas D. Hastie

Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.


Diabetes | 2009

Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans.

Roland H. Stimson; Jonas Andersson; Ruth Andrew; Doris N. Redhead; Fredrik Karpe; Peter C. Hayes; Tommy Olsson; Brian R. Walker

OBJECTIVE—11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates cortisol from cortisone. 11β-HSD1 mRNA and activity are increased in vitro in subcutaneous adipose tissue from obese patients. Inhibition of 11β-HSD1 is a promising therapeutic approach in type 2 diabetes. However, release of cortisol by 11β-HSD1 from adipose tissue and its effect on portal vein cortisol concentrations have not been quantified in vivo. RESEARCH DESIGN AND METHODS—Six healthy men underwent 9,11,12,12-[2H]4-cortisol infusions with simultaneous sampling of arterialized and superficial epigastric vein blood sampling. Four men with stable chronic liver disease and a transjugular intrahepatic porto-systemic shunt in situ underwent tracer infusion with simultaneous sampling from the portal vein, hepatic vein, and an arterialized peripheral vein. RESULTS—Significant cortisol and 9,12,12-[2H]3-cortisol release were observed from subcutaneous adipose tissue (15.0 [95% CI 0.4–29.5] and 8.7 [0.2–17.2] pmol · min−1 · 100 g−1 adipose tissue, respectively). Splanchnic release of cortisol and 9,12,12-[2H]3-cortisol (13.5 [3.6–23.5] and 8.0 [2.6–13.5] nmol/min, respectively) was accounted for entirely by the liver; release of cortisol from visceral tissues into portal vein was not detected. CONCLUSIONS—Cortisol is released from subcutaneous adipose tissue by 11β-HSD1 in humans, and increased enzyme expression in obesity is likely to increase local glucocorticoid signaling and contribute to whole-body cortisol regeneration. However, visceral adipose 11β-HSD1 activity is insufficient to increase portal vein cortisol concentrations and hence to influence intrahepatic glucocorticoid signaling.


Diabetes | 2012

Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo

Katherine A. Hughes; Konstantinos N. Manolopoulos; Javaid Iqbal; Nicholas L. Cruden; Roland H. Stimson; Rebecca M. Reynolds; David E. Newby; Ruth Andrew; Fredrik Karpe; Brian R. Walker

11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) is a therapeutic target in metabolic syndrome because it catalyses reductase regeneration of cortisol from cortisone in adipose and liver. 11βHSD1 can also catalyze the reverse dehydrogenase reaction in vitro (e.g., if cofactor is limited). We used stable isotope tracers to test the hypothesis that both 11βHSD1-reductase and -dehydrogenase activities occur in human metabolic tissues in vivo. 1,2-[2H]2-Cortisone (d2-cortisone) was validated as a tracer for 11β-dehydrogenase activity and its inhibition by licorice. d2-Cortisone and 9,11,12,12-[2H]4-cortisol (d4-cortisol) (to measure 11β-reductase activity) were coinfused and venous samples obtained from skeletal muscle, subcutaneous adipose (n = 6), and liver (n = 4). Steroids were measured by liquid chromatography–tandem mass spectrometry and arteriovenous differences adjusted for blood flow. Data are means ± SEM. 11β-Reductase and -dehydrogenase activities were detected in muscle (cortisol release 19.7 ± 4.1 pmol/100 mL/min, d3-cortisol 5.9 ± 1.8 pmol/100 mL/min, and cortisone 15.2 ± 5.8 pmol/100 mL/min) and splanchnic (cortisol 64.0 ± 11.4 nmol/min, d3-cortisol 12.9 ± 2.1 nmol/min, and cortisone 19.5 ± 2.8 nmol/min) circulations. In adipose, dehydrogenase was more readily detected than reductase (cortisone release 38.7 ± 5.8 pmol/100 g/min). Active recycling between cortisol and cortisone in metabolic tissues in vivo may facilitate dynamic control of intracellular cortisol but makes consequences of dysregulation of 11βHSD1 transcription in obesity and diabetes unpredictable. Disappointing efficacy of 11βHSD1 inhibitors in phase II studies could be explained by lack of selectivity for 11β-reductase.


Cell Metabolism | 2016

Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation.

Lynne Ramage; Murat Akyol; Alison Fletcher; John L. R. Forsythe; Mark Nixon; Roderick N. Carter; Edwin Jacques Rudolph van Beek; Nicholas M. Morton; Brian R. Walker; Roland H. Stimson

Summary The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased 18fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°C–17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health.


Diabetes | 2012

Salicylate Downregulates 11β-HSD1 Expression in Adipose Tissue in Obese Mice and in Humans, Mediating Insulin Sensitization

Mark Nixon; Deborah J. Wake; Dawn E. W. Livingstone; Roland H. Stimson; Cristina L. Esteves; Jonathan R. Seckl; Karen E. Chapman; Ruth Andrew; Brian R. Walker

Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity. We hypothesized that salicylates downregulate 11β-HSD1 expression, contributing to their metabolic efficacy. We treated diet-induced obese (DIO) 11β-HSD1–deficient mice and C57Bl/6 mice with sodium salicylate for 4 weeks. Glucose tolerance was assessed in vivo. Tissue transcript levels were assessed by quantitative PCR and enzyme activity by incubation with 3H-steroid. Two weeks’ administration of salsalate was also investigated in a randomized double-blind placebo-controlled crossover study in 16 men, with measurement of liver 11β-HSD1 activity in vivo and adipose tissue 11β-HSD1 transcript levels ex vivo. In C57Bl/6 DIO mice, salicylate improved glucose tolerance and downregulated 11β-HSD1 mRNA and activity selectively in visceral adipose. DIO 11β-HSD1–deficient mice were resistant to these metabolic effects of salicylate. In men, salsalate reduced 11β-HSD1 expression in subcutaneous adipose, and in vitro salicylate treatment reduced adipocyte 11β-HSD1 expression and induced adiponectin expression only in the presence of 11β-HSD1 substrate. Reduced intra-adipose glucocorticoid regeneration by 11β-HSD1 is a novel mechanism that contributes to the metabolic efficacy of salicylates.


Diabetes | 2011

Increased Whole-Body and Sustained Liver Cortisol Regeneration by 11β-Hydroxysteroid Dehydrogenase Type 1 in Obese Men With Type 2 Diabetes Provides a Target for Enzyme Inhibition

Roland H. Stimson; Ruth Andrew; Norma C. McAvoy; Dhiraj Tripathi; Peter C. Hayes; Brian R. Walker

OBJECTIVE The cortisol-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid levels in liver and adipose tissue. 11β-HSD1 inhibitors are being developed to treat type 2 diabetes. In obesity, 11β-HSD1 is increased in adipose tissue but decreased in liver. The benefits of pharmacological inhibition may be reduced if hepatic 11β-HSD1 is similarly decreased in obese patients with type 2 diabetes. To examine this, we quantified in vivo whole-body, splanchnic, and hepatic 11β-HSD1 activity in obese type 2 diabetic subjects. RESEARCH DESIGN AND METHODS Ten obese men with type 2 diabetes and seven normal-weight control subjects were infused with 9,11,12,12-[2H]4cortisol (40%) and cortisol (60%) at 1.74 mg/h. Adrenal cortisol secretion was suppressed with dexamethasone. Samples were obtained from the hepatic vein and an arterialized hand vein at steady state and after oral administration of cortisone (5 mg) to estimate whole-body and liver 11β-HSD1 activity using tracer dilution. RESULTS In obese type 2 diabetic subjects, the appearance rate of 9,12,12-[2H]3cortisol in arterialized blood was increased (35 ± 2 vs. 29 ± 1 nmol/min, P < 0.05), splanchnic 9,12,12-[2H]3cortisol production was not reduced (29 ± 6 vs. 29 ± 6 nmol/min), and cortisol appearance in the hepatic vein after oral cortisone was unchanged. CONCLUSIONS Whole-body 11β-HSD1 activity is increased in obese men with type 2 diabetes, whereas liver 11β-HSD1 activity is sustained, unlike in euglycemic obesity. This supports the concept that inhibitors of 11β-HSD1 are likely to be most effective in obese type 2 diabetic subjects.


The Journal of Clinical Endocrinology and Metabolism | 2013

Genotype-Phenotype Correlation in 153 Adult Patients With Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency: Analysis of the United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE) Cohort

Nils Krone; Ian T. Rose; Debbie Willis; James Hodson; Sarah H. Wild; Emma J. Doherty; Stefanie Hahner; Silvia Parajes; Roland H. Stimson; Thang S. Han; Paul V. Carroll; G. S. Conway; Brian R. Walker; Fiona MacDonald; Richard Ross; Wiebke Arlt

CONTEXT In congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, a strong genotype-phenotype correlation exists in childhood. However, similar data in adults are lacking. OBJECTIVE The objective of the study was to test whether the severity of disease-causing CYP21A2 mutations influences the treatment and health status in adults with CAH. RESEARCH DESIGN AND METHODS We analyzed the genotype in correlation with treatment and health status in 153 adults with CAH from the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive cohort. RESULTS CYP21A2 mutations were distributed similarly to previously reported case series. In 7 patients a mutation was identified on only 1 allele. Novel mutations were detected on 1.7% of alleles (5 of 306). Rare mutations were found on 2.3% of alleles (7 of 306). For further analysis, patients were categorized into CYP21A2 mutation groups according to predicted residual enzyme function: null (n = 34), A (n = 42), B (n = 36), C (n = 34), and D (n = 7). Daily glucocorticoid dose was highest in group null and lowest in group C. Fludrocortisone was used more frequently in patients with more severe genotypes. Except for lower female height in group B, no statistically significant associations between genotype and clinical parameters were found. Androgens, blood pressure, lipids, blood glucose, and homeostasis model assessment of insulin resistance were not different between groups. Subjective health status was similarly impaired across groups. CONCLUSIONS In adults with classic CAH and women with nonclassic CAH, there was a weak association between genotype and treatment, but health outcomes were not associated with genotype. The underrepresentation of males with nonclassic CAH may reflect that milder genotypes result in a milder condition that is neither diagnosed nor followed up in adulthood. Overall, our results suggest that the impaired health status of adults with CAH coming to medical attention is acquired rather than genetically determined and therefore could potentially be improved through modification of treatment.


European Journal of Endocrinology | 2011

A combination of polymorphisms in HSD11B1 associates with in vivo 11β-HSD1 activity and metabolic syndrome in women with and without polycystic ovary syndrome

Alessandra Gambineri; Federica Tomassoni; Alessandra Munarini; Roland H. Stimson; Roberto Mioni; Uberto Pagotto; Karen E. Chapman; Ruth Andrew; Vilma Mantovani; Renato Pasquali; Brian R. Walker

OBJECTIVE Regeneration of cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) within liver and adipose tissue may be of pathophysiological importance in obesity and the metabolic syndrome. single nucleotide polymorphisms (SNPs) in HSD11B1, the gene encoding 11β-HSD1, have been associated with type 2 diabetes and hypertension in population-based cohort studies, and with hyperandrogenism in patients with the polycystic ovary syndrome (PCOS). However, the functional consequences of these SNPs for in vivo 11β-HSD1 expression and activity are unknown. METHODS We explored associations of well-characterised hormonal and metabolic phenotypes with two common SNPs (rs846910 and rs12086634) in HSD11B1 in 600 women (300 with PCOS) and investigated 11β-HSD1 expression and activity in a nested study of 40 women from this cohort. RESULTS HSD11B1 genotypes (as single SNPs and as the combination of the two minor allele SNPs) were not associated with PCOS. Women who were heterozygous for rs846910 A and homozygous for rs12086634 T (GA, TT genotype) had a higher risk of metabolic syndrome, regardless of the diagnosis of PCOS (odds ratio in the whole cohort=2.77 (95% confidence interval (CI) 1.16-6.67), P=0.023). In the nested cohort, women with the GA, TT genotype had higher HSD11B1 mRNA levels in adipose tissue, and higher rates of appearance of cortisol and d3-cortisol (16.1±0.7 nmol/min versus 12.1±1.1, P=0.044) during 9,11,12,12-2H4-cortisol (d4-cortisol) steady-state infusion. CONCLUSIONS We conclude that, in a population of Southern European Caucasian women with and without PCOS, alleles of HSD11B1 containing the two SNPs rs846910 A and rs12086634 T confer increased 11β-HSD1 expression and activity, which associates with the metabolic syndrome.


Clinical Endocrinology | 2013

Glucocorticoid treatment regimen and health outcomes in adults with congenital adrenal hyperplasia

Thang S. Han; Roland H. Stimson; Dafydd Rees Rees; Nils Krone; Debbie Willis; G. S. Conway; Wiebke Arlt; Brian R. Walker; Richard Ross

Adults with congenital adrenal hyperplasia (CAH) are treated with a wide variety of glucocorticoid treatment regimens.

Collaboration


Dive into the Roland H. Stimson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Andrew

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wiebke Arlt

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Krone

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard Ross

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge