Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Mitrić is active.

Publication


Featured researches published by Roland Mitrić.


Journal of Chemical Physics | 2002

Density functional study of structural and electronic properties of bimetallic silver–gold clusters: Comparison with pure gold and silver clusters

Vlasta Bonačić-Koutecký; Jaroslav V. Burda; Roland Mitrić; Maofa Ge; Giuseppe Zampella; Piercarlo Fantucci

Bimetallic silver–gold clusters offer an excellent opportunity to study changes in metallic versus “ionic” properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun [3⩽(m+n)⩽5] clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8...


Journal of Chemical Physics | 2001

Ab initio study of the absorption spectra of Agn (n=5–8) clusters

Vlasta Bonacic-Koutecky; Vincent Veyret; Roland Mitrić

The absorption spectra of Ag5–8 have been determined in the framework of the linear response equation-of-motion coupled cluster method and related techniques employing 11-electron relativistic effective core potential. In these treatments electron correlation effects for 11 electrons per atom are included, providing an accurate description of excited states of silver clusters. The calculations of transition energies and oscillator strengths have been carried out in a large energy interval for the stable structures and for the isomeric forms higher in energy. This allowed us to investigate the influence of structural properties on the spectroscopic patterns and to determine the role of d-electrons. Inclusion of d-electrons in the correlation treatment is mandatory to obtain accurate values for transition energies, but the excitations of s-electrons are primarily responsible for the spectroscopic patterns. They are characterized by the interference phenomena known in molecular spectroscopy which lead to a s...


Journal of the American Chemical Society | 2009

Influence of Charge State on Catalytic Oxidation Reactions at Metal Oxide Clusters Containing Radical Oxygen Centers

Grant E. Johnson; Roland Mitrić; Melanie Nössler; Eric C. Tyo; Vlasta Bonacic-Koutecky; A. W. Castleman

Evidence obtained by guided-ion-beam mass spectrometry experiments and density functional theory calculations indicates that by adding one oxygen atom with a full octet of valence electrons (O(2-)) to stoichiometric cationic zirconium oxide clusters (ZrO(2))(x)(+) (x = 1-4), a series of anionic clusters (Zr(x)O(2x+1))(-) (x = 1-4) are formed which contain radical oxygen centers with elongated (elongation approximately 0.24 +/- 0.02 A) metal-oxygen bonds. These anionic clusters oxidize carbon monoxide, strongly associate acetylene, and weakly associate ethylene, in contrast to the cationic species which were found previously to be highly active toward the oxidation of all three molecules. Theoretical investigations indicate that a critical hydrogen transfer step necessary for the oxidation of ethylene and acetylene at metal oxide clusters containing radical oxygen centers is energetically favorable for cationic clusters but unfavorable for the corresponding anionic species. The calculated electrostatic potential of the cluster reveals that in the case of cations, a favorable interaction with nucleophilic molecules takes place over the whole surface of the (ZrO(2))(x)(+) (x = 1-4) clusters, compared to a restricted interaction of ethylene and acetylene with the less coordinated zirconium atom in the case of the anionic (Zr(x)O(2x+1))(-) (x = 1-4) species. Therefore, in spite of the common presence of a radical oxygen center in specific anionic and cationic stoichiometries, the extent to which various classes of reactions are promoted is influenced by charge state. Moreover, the (Zr(x)O(2x+1))(-) (x = 1-4) series of anionic clusters may be regenerated by reacting oxygen deficient clusters with a strong oxidizer. This indicates that not only cationic species, as shown previously, but also anionic clusters may promote multiple cycles of carbon monoxide oxidation.


Journal of the American Chemical Society | 2008

Influence of Charge State on the Mechanism of CO Oxidation on Gold Clusters

Christian Bürgel; Nelly M. Reilly; Grant E. Johnson; Roland Mitrić; Michele L. Kimble; A. W. Castleman, Jr., ,‡ and; Vlasta Bonačić-Koutecký

We present results from our joint experimental and theoretical study of the reactivity of anionic and cationic gold oxide clusters toward CO, focusing on the role of atomic oxygen, different charge states, and mechanisms for oxidation. We show that anionic clusters react by an Eley-Rideal-like mechanism involving the preferential attack of CO on oxygen rather than gold. In contrast, the oxidation of CO on cationic gold oxide clusters can occur by both an Eley-Rideal-like and a Langmuir-Hinshelwood-like mechanism at multiple collision conditions as a result of the high adsorption energy of two CO molecules. This large energy of CO adsorption on cationic gold oxide clusters is the driving force for the CO oxidation. Therefore, in the presence of cationic gold species at high pressures of CO, the oxidation reaction is self-promoting (i.e., the oxidation of one CO molecule is promoted by the binding of a second CO). Our findings provide new insight into the role of charge state in gold-cluster-based nanocatalysis.


Journal of the American Chemical Society | 2008

Stoichiometric Zirconium Oxide Cations as Potential Building Blocks for Cluster Assembled Catalysts

Grant E. Johnson; Roland Mitrić; Eric C. Tyo; Vlasta Bonačić-Koutecký; A. W. Castleman

Employing guided-ion-beam mass spectrometry, we identified a series of positively charged stoichiometric zirconium oxide clusters that exhibit enhanced activity and selectivity for three oxidation reactions of widespread chemical importance. Density functional theory calculations reveal that these clusters all contain the same active site consisting of a radical oxygen center with an elongated zirconium-oxygen bond. Calculated energy profiles demonstrate that each oxidation reaction is highly favorable energetically and involves easily surmountable barriers. Furthermore, the active stoichiometric clusters may be regenerated by reacting oxygen-deficient clusters with a strong oxidizer. This indicates that these species may promote multiple cycles of oxidation reactions and, therefore, exhibit true catalytic behavior. The stoichiometric clusters, having structures that resemble specific sites in bulk zirconia, are promising candidates for potential incorporation into a cluster assembled catalyst material.


Journal of Physical Chemistry A | 2009

Nonadiabatic dynamics within time-dependent density functional tight binding method.

Roland Mitrić; Ute Werner; Matthias Wohlgemuth; Gotthard Seifert; Vlasta Bonacic-Koutecky

A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional tight binding method (TDDFTB) combined with Tullys stochastic surface hopping algorithm. The applicability of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics of microsolvated adenine. Our results demonstrate that in the presence of water, upon initial excitation to the S(3) (pi-pi*) state at 260 nm, an ultrafast relaxation to the S(1) state with a time constant of 16 fs is induced, followed by the radiationless decay to the ground state with a time constant of 200 fs.


Journal of Chemical Physics | 2006

Joint experimental and theoretical investigations of the reactivity of Au2On− and Au3On− (n=1–5) with carbon monoxide

Michele L. Kimble; Nelly A. Moore; Grant E. Johnson; A. W. Castleman; Christian Bürgel; Roland Mitrić; Vlasta Bonačić-Koutecký

The interactions between small gold oxide cluster anions, Au(2,3)O-(n) (n=1-5), and CO were investigated in a fast-flow reactor mass spectrometer, and experimental results were verified with a guided ion beam mass spectrometer. Density functional calculations along with molecular dynamics simulations were also utilized to explain the experimental findings. From these studies, we show that, for the interactions between Au(m)O-(n) and CO, each atom counts. With the addition of a single gold atom, it is observed that association of CO and replacement of O(2) by CO become the dominant reaction channels as opposed to CO oxidation. We also present results that show that the oxidation of CO takes place only in the presence of a peripheral oxygen atom. However, this condition is not always sufficient. Furthermore, the association of CO onto Au(m)O-(n) follows a general qualitative rule based on the relationship between the energy of the cluster lowest unoccupied molecular orbital and the binding energy of CO.


Journal of Physical Chemistry A | 2011

Tuning Cluster Reactivity by Charge State and Composition: Experimental and Theoretical Investigation of CO Binding Energies to AgnAum+/−(n+m= 3)

Denisia Popolan; Nössler M; Roland Mitrić; Thorsten M. Bernhardt; Bonacić-Koutecký

Temperature-dependent gas-phase reaction kinetics measurements and equilibrium thermodynamics under multicollision conditions in conjunction with ab initio DFT calculations were employed to determine the binding energies of carbon monoxide to triatomic silver-gold binary cluster cations and anions. The binding energies of the first CO molecule to the trimer clusters increase with increasing gold content and with changing charge from negative to positive. Thus, the reactivity of the binary clusters can be sensitively tuned by varying charge state and composition. Also, multiple CO adsorption on the clusters was investigated. The maximum number of adsorbed CO molecules was found to strongly depend on cluster charge and composition as well. Most interestingly, the cationic carbonyl complex Au(3)(CO)(4)(+) is formed at cryogenic temperature, whereas for the anion, only two CO molecules are adsorbed, leading to Au(3)(CO)(2)(-). All other trimer clusters adsorb three CO molecules in the case of the cations and are completely inert to CO in our experiment in the case of the anions.


Journal of Chemical Physics | 2011

Time-dependent density functional theory excited state nonadiabatic dynamics combined with quantum mechanical/molecular mechanical approach: photodynamics of indole in water.

Matthias Wohlgemuth; Vlasta Bonačić-Koutecký; Roland Mitrić

We present a combination of time-dependent density functional theory with the quantum mechanical/molecular mechanical approach which can be applied to study nonadiabatic dynamical processes in molecular systems interacting with the environment. Our method is illustrated on the example of ultrafast excited state dynamics of indole in water. We compare the mechanisms of nonradiative relaxation and the electronic state lifetimes for isolated indole, indole in a sphere of classical water, and indole + 3H(2)O embedded in a classical water sphere. In the case of isolated indole, the initial excitation to the S(2) electronic state is followed by an ultrafast internal conversion to the S(1) state with a time constant of 17 fs. The S(1) state is long living (>30 ps) and deactivates to the ground state along the N-H stretching coordinate. This deactivation mechanism remains unchanged for indole in a classical water sphere. However, the lifetimes of the S(2) and S(1) electronic states are extended. The inclusion of three explicit water molecules opens a new relaxation channel which involves the electron transfer to the solvent, leading eventually to the formation of a solvated electron. The relaxation to the ground state takes place on a time scale of 60 fs and contributes to the lowering of the fluorescence quantum yield. Our simulations demonstrate the importance of including explicit water molecules in the theoretical treatment of solvated systems.


Journal of Chemical Physics | 2013

Time-resolved photoelectron imaging spectra from non-adiabatic molecular dynamics simulations

Alexander Humeniuk; Matthias Wohlgemuth; Toshinori Suzuki; Roland Mitrić

We present an efficient method for the simulation of time-resolved photoelectron imaging (TRPEI) spectra in polyatomic molecules. Our approach combines trajectory-based molecular dynamics that account for non-adiabatic effects using surface hopping, with an approximate treatment of the photoionization process using Dyson orbitals as initial and Coulomb waves as final electron states. The method has been implemented in the frame of linear response time-dependent density functional theory. As an illustration, we simulate time- and energy-resolved anisotropy maps for the furan molecule and compare them with recent experimental data [T. Fuji, Y.-I. Suzuki, T. Horio, T. Suzuki, R. Mitrić, U. Werner, and V. Bonačić-Koutecký, J. Chem. Phys. 133, 234303 (2010)]. Our method can be generally used for the interpretation of TRPEI experiments allowing to shed light into the fundamental photochemical processes in complex molecules.

Collaboration


Dive into the Roland Mitrić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Petersen

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

A. W. Castleman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Christian Bürgel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Werner

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge