Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Mumm is active.

Publication


Featured researches published by Roland Mumm.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Whiteflies interfere with indirect plant defense against spider mites in Lima bean.

Peng-Jun Zhang; Si-Jun Zheng; Van Loon; Wilhelm Boland; Anja David; Roland Mumm; Marcel Dicke

Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels.


Canadian Journal of Zoology | 2010

Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense

Roland Mumm; Marcel Dicke

Plants can respond to feeding or egg deposition by herbivorous arthropods by changing the volatile blend that they emit. These herbivore-induced plant volatiles (HIPVs) can attract carnivorous natural enemies of the herbivores, such as parasitoids and predators, a phenomenon that is called indirect plant defense. The volatile blends of infested plants can be very complex, sometimes consisting of hundreds of compounds. Most HIPVs can be classified as terpenoids (e.g., (E)-β-ocimene, (E,E)-α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene), green leaf volatiles (e.g., hexanal, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate), phenylpropanoids (e.g., methyl salicylate, indole), and sulphur- or nitrogen-containing compounds (e.g., isothiocyanates or nitriles, respectively). One highly intriguing question has been which volatiles out of the complex blend are the most important ones for the carnivorous natural enemies to locate suitable host plants. Here, we review the methods and techniques that have been used to elucid...


PLOS ONE | 2011

Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes

Niels O. Verhulst; Yu Tong Qiu; Hans Beijleveld; Chris Maliepaard; Dan Knights; Stefan Schulz; Donna Berg-Lyons; Christian L. Lauber; Willem Verduijn; Geert W. Haasnoot; Roland Mumm; Harro J. Bouwmeester; Frans H.J. Claas; Marcel Dicke; Joop J. A. van Loon; Willem Takken; Rob Knight; Renate C. Smallegange

The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Isoprene interferes with the attraction of bodyguards by herbaceous plants

Maaria Loivamäki; Roland Mumm; Marcel Dicke; Jörg-Peter Schnitzler

Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is part of plant defense against abiotic stresses. However, whether isoprene influences biotic interactions between plants and other organisms has not been investigated to date. Here we show a new effect of isoprene, namely its influence on interactions between plants and insects. Herbivory induces the release of plant volatiles that attract the herbivores enemies, such as parasitic wasps, as a kind of bodyguard. We used transgenic isoprene-emitting Arabidopsis plants in behavioral, chemical, and electrophysiological studies to investigate the effects of isoprene on ecological interactions in 2 tritrophic systems. We demonstrate that isoprene is perceived by the chemoreceptors of the parasitic wasp Diadegma semiclausum and interferes with the attraction of this parasitic wasp to volatiles from herbivore-infested plants. We verified this repellent effect on D. semiclausum female wasps by adding external isoprene to the volatile blend of wild-type plants. In contrast, the antennae of the parasitic wasp Cotesia rubecula do not perceive isoprene and the behavior of this wasp was not altered by isoprene emission. In addition, the performance of the 2 examined lepidopteran herbivores (Pieris rapae and Plutella xylostella) was not affected by isoprene emission. Therefore, attraction of parasitic wasps to host-infested herbaceous plants in the neighborhood of high isoprene emitters, such as poplar or willow, may be hampered by the isoprene emission that repels plant bodyguards.


Journal of Chemical Ecology | 2003

Chemical Analysis of Volatiles Emitted by Pinus sylvestris After Induction by Insect Oviposition

Roland Mumm; Kai Schrank; Robert Wegener; Stefan Schulz; Monika Hilker

Gas chromatography – mass spectrometry analyses of the headspace volatiles of Scots pine (Pinus sylvestris) induced by egg deposition of the sawfly Diprion pini were conducted. The odor blend of systemically oviposition-induced pine twigs, attractive for the eulophid egg parasitoid Chrysonotomyia ruforum, was compared to volatiles released by damaged pine twigs (control) that are not attractive for the parasitoid. The mechanical damage inflicted to the control twigs mimicked the damage by a sawfly female prior to egg deposition. The odor blend released by oviposition-induced pine twigs consisted of numerous mono- and sesquiterpenes, which all were also present in the headspace of the artificially damaged control twigs. A quantitative comparison of the volatiles from oviposition-induced twigs and controls revealed that only the amounts of (E)-β-farnesene were significantly higher in the volatile blend of the oviposition-induced twigs. Volatiles from pine twigs treated with jasmonic acid (JA) also attract the egg parasitoid. No qualitative differences were detected when comparing the composition of the headspace of JA-treated pine twigs with the volatile blend of untreated control twigs. JA-treated pine twigs released significantly higher amounts of (E)-β-farnesene. However, the JA treatment induced a significant increase of the amount of further terpenoid components. The release of terpenoids by pine after wounding, egg deposition, and JA treatment is discussed with special respect to (E)-β-farnesene.


Journal of Experimental Botany | 2009

Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores

Maaike Bruinsma; Maarten A. Posthumus; Roland Mumm; Martin J. Mueller; Joop J. A. van Loon; Marcel Dicke

Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting–chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps.


PLOS ONE | 2014

Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding

Mariafe Calingacion; Alice G. Laborte; Andrew Nelson; Adoracion P. Resurreccion; Jeanaflor Crystal T. Concepcion; Venea Dara Daygon; Roland Mumm; Russell F Reinke; Sharifa Sultana Dipti; Priscila Zaczuk Bassinello; John Manful; Sakhan Sophany; Karla Cordero Lara; Jinsong Bao; Lihong Xie; Katerine Loaiza; Ahmad El-hissewy; Joseph Gayin; Neerja Sharma; Sivakami Rajeswari; Swaminathan Manonmani; N. Shobha Rani; Suneetha Kota; Siti Dewi Indrasari; Fatemeh Habibi; Maryam Hosseini; Fatemeh Tavasoli; Keitaro Suzuki; Takayuki Umemoto; Chanthkone Boualaphanh

With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.


New Phytologist | 2011

Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics

Annick Moing; Asaph Aharoni; Benoît Biais; Ilana Rogachev; Sagit Meir; Leonid Brodsky; J. William Allwood; Alexander Erban; Warwick B. Dunn; Lorraine Kay; Sjaak de Koning; Ric C. H. de Vos; Harry Jonker; Roland Mumm; Catherine Deborde; Michael Maucourt; Stéphane Bernillon; Yves Gibon; Thomas H. Hansen; Søren Husted; Royston Goodacre; Joachim Kopka; Jan K. Schjoerring; Dominique Rolin; Robert D. Hall

• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.


The Journal of Experimental Biology | 2005

Insect egg deposition induces defence responses in Pinus sylvestris : characterisation of the elicitor

Monika Hilker; Claudia Stein; Roland Schröder; Martti Varama; Roland Mumm

SUMMARY Egg deposition by the phytophagous sawfly Diprion pini L. (Hymenoptera, Diprionidae) is known to induce locally and systemically the emission of volatiles in Scots pine (Pinus sylvestris L.) that attract the egg parasitoid Chrysonotomyia ruforum Krausse (Hymenoptera, Eulophidae). The egg parasitoids kill the eggs and thus prevent damage to the plant from feeding sawfly larvae. The elicitor inducing the pines response is known to be located in the oviduct secretion which the female sawfly applies to the eggs when inserting them into a slit in the pine needle using the sclerotized ovipositor valves. In this study we have characterized the elicitor. The elicitor was still active when isolated from the oviduct and applied directly to slits made in the pine needles. However, as soon as the oviduct secretion was dissolved in Aqua dest. and stored for 3 h at room temperature or kept frozen at -80°C, its activity was lost. In contrast, oviduct secretion kept its eliciting activity, when dissolved in Ringer solution (pH 7.2) both after storage at room temperature and after freezing. The activity of the elicitor vanished after treatment of the oviduct secretion with proteinase K, which destroyed all proteins. This suggests that the elicitor in the oviduct secretion is a peptide or protein, or a component bound to these. SDS-PAGE revealed a similar, but not identical protein pattern from hemolymph and oviduct secretion. Hemolymph itself has no eliciting effect. The elicitor in the oviduct secretion is only active when transferred to slit pine needles, since its application on undamaged needles did not induce the emission of attractive volatiles.


Journal of Chemical Ecology | 2008

Formation of Simple Nitriles upon Glucosinolate Hydrolysis Affects Direct and Indirect Defense Against the Specialist Herbivore, Pieris rapae

Roland Mumm; Meike Burow; Gabriella Bukovinszkiné-Kiss; Efthymia Kazantzidou; Ute Wittstock; Marcel Dicke; Jonathan Gershenzon

The glucosinolate–myrosinase system, found in plants of the order Brassicales, has long been considered an effective defense system against herbivores. The defensive potential of glucosinolates is mainly due to the products formed after myrosinase-catalyzed hydrolysis upon tissue damage. The most prominent hydrolysis products, the isothiocyanates, are toxic to a wide range of organisms, including herbivorous lepidopterans. In contrast, little is known about the biological activities of alternative hydrolysis products such as simple nitriles and epithionitriles that are formed at the expense of isothiocyanates in the presence of epithiospecifier proteins (ESPs). Here, we used transgenic Arabidopsisthaliana (Brassicaceae) plants overexpressing ESP (35S:ESP plants) to investigate the effects of simple nitriles on direct and indirect defense against the specialist cabbage white butterfly Pieris rapae L. (Lepidoptera, Pieridae). In the 35S:ESP plants, glucosinolates are hydrolyzed mainly to simple nitriles upon tissue disruption, while isothiocyanates are the predominant hydrolysis products in Columbia-0 (Col-0) wild-type plants. The parasitoid Cotesia rubecula (Hymenoptera, Braconidae), a specialist on P. rapae larvae, was significantly more attracted to P. rapae-infested 35S:ESP plants than to P. rapae-infested Col-0 wild-type plants in a wind tunnel setup. Furthermore, female P. rapae butterflies laid more eggs on Col-0 wild-type plants than on 35S:ESP plants when the plants had been damaged previously. However, when given a choice to feed on 35S:ESP or Col-0 plants, caterpillars did not discriminate between the two genotypes. Growth rate and developmental time were not significantly different between caterpillars that were reared on 35S:ESP or Col-0 plants. Thus, the production of simple nitriles instead of isothiocyanates, as catalyzed by ESP, can promote both direct and indirect defense against the specialist herbivore P. rapae.

Collaboration


Dive into the Roland Mumm's collaboration.

Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Robert D. Hall

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Monika Hilker

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ric C. H. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Harro J. Bouwmeester

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joop J. A. van Loon

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mariafe Calingacion

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Vosman

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge