Roland Philippsen
Halmstad University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland Philippsen.
Robotics and Autonomous Systems | 2003
Roland Siegwart; Kai Oliver Arras; Samir Bouabdallah; Daniel Burnier; Gilles Froidevaux; Xavier Greppin; Björn Jensen; Antoine Lorotte; Laetitia Mayor; Mathieu Meisser; Roland Philippsen; R. Piguet; Guy Ramel; Grégoire Terrien; Nicola Tomatis
In this paper we present Robox, a mobile robot designed for operation in a mass exhibition and the experience we made with its installation at the Swiss National Exhibition Expo.02. Robox is a fully autonomous mobile platform with unique multi-modal interaction capabilities, a novel approach to global localization using multiple Gaussian hypotheses, and a powerful obstacle avoidance. Eleven Robox ran for 12 hours daily from May 15 to October 20, 2002, traveling more than 3315 km and interacting with 686,000 visitors.
international conference on robotics and automation | 2003
Roland Philippsen; Roland Siegwart
We present the local path planning and obstacle avoidance method used on the autonomous tour-guide robot RoboX. It has proven its value during a 5 month operation of ten such robots in a real-world application, a very crowded exhibition. Three known approaches (DWA, elastic band, NF1) have been integrated into a system that performs smooth motion efficiently, in the sense of computational effort as well as goal-directedness. Apart from modifications to the DWA and the elastic band, we present the formulations that allow this fusion.
international conference on robotics and automation | 2005
Roland Philippsen; Roland Siegwart
The E* algorithm is a path planning method capable of dynamic replanning and user-configurable path cost interpolation. It calculates a navigation function as a sampling of an underlying smooth goal distance that takes into account a continuous notion of risk that can be controlled in a fine-grained manner. E* results in more appropriate paths during gradient descent. Dynamic replanning means that changes in the environment model can be repaired to avoid the expenses of complete replanning. This helps compensating for the increased computational effort required for interpolation. We present the theoretical basis and a working implementation, as well as measurements of the algorithm’s precision, topological correctness, and computational effort.
Autonomous Robots | 2013
Luis Sentis; Josh Petersen; Roland Philippsen
In this work, we implement the floating base prioritized whole-body compliant control framework described in Sentis et al. (IEEE Transactions on Robotics 26(3):483–501, 2010) on a wheeled humanoid robot maneuvering in sloped terrains. We then test it for a variety of compliant whole-body behaviors including balance and kinesthetic mobility on irregular terrain, and Cartesian hand position tracking using the co-actuated (i.e. two joints are simultaneously actuated with one motor) robot’s upper body. The implementation serves as a hardware proof for a variety of whole-body control concepts that had previously been developed and tested in simulation. First, behaviors of two and three priority tasks are implemented and successfully executed on the humanoid hardware. In particular, first and second priority tasks are linearized in the task space through model feedback and then controlled through task accelerations. Postures, on the other hand, are shown to be asymptotically stable when using prioritized whole-body control structures and then successfully tested in the real hardware. To cope with irregular terrains, the base is modeled as a six degree of freedom floating system and the wheels are characterized through contact and rolling constraints. Finally, center of mass balance capabilities using whole-body compliant control and kinesthetic mobility are implemented and tested in the humanoid hardware to climb terrains with various slopes.
international conference on robotics and automation | 2009
Fang Yuan; Agnes Swadzba; Roland Philippsen; Orhan Engin; Marc Hanheide; Sven Wachsmuth
Navigation and obstacle avoidance in robotics using planar laser scans has matured over the last decades. They basically enable robots to penetrate highly dynamic and populated spaces, such as peoples home, and move around smoothly. However, in an unconstrained environment the two-dimensional perceptual space of a fixed mounted laser is not sufficient to ensure safe navigation. In this paper, we present an approach that pools a fast and reliable motion generation approach with modern 3D capturing techniques using a Time-of-Flight camera. Instead of attempting to implement full 3D motion control, which is computationally more expensive and simply not needed for the targeted scenario of a domestic robot, we introduce a “virtual laser”. For the originally solely laser-based motion generation the technique of fusing real laser measurements and 3D point clouds into a continuous data stream is 100% compatible and transparent. The paper covers the general concept, the necessary extrinsic calibration of two very different types of sensors, and exemplarily illustrates the benefit which is to avoid obstacles not being perceivable in the original laser scan.
Journal of Field Robotics | 2016
Peter Mühlfellner; Mathias Bürki; Michael Bosse; Wojciech Waclaw Derendarz; Roland Philippsen; Paul Timothy Furgale
Robots that use vision for localization need to handle environments that are subject to seasonal and structural change, and operate under changing lighting and weather conditions. We present a framework for lifelong localization and mapping designed to provide robust and metrically accurate online localization in these kinds of changing environments. Our system iterates between offline map building, map summary, and online localization. The offline mapping fuses data from multiple visually varied datasets, thus dealing with changing environments by incorporating new information. Before passing these data to the online localization system, the map is summarized, selecting only the landmarks that are deemed useful for localization. This Summary Map enables online localization that is accurate and robust to the variation of visual information in natural environments while still being computationally efficient. We present a number of summary policies for selecting useful features for localization from the multisession map, and we explore the tradeoff between localization performance and computational complexity. The system is evaluated on 77 recordings, with a total length of 30 kilometers, collected outdoors over 16 months. These datasets cover all seasons, various times of day, and changing weather such as sunshine, rain, fog, and snow. We show that it is possible to build consistent maps that span data collected over an entire year, and cover day-to-night transitions. Simple statistics computed on landmark observations are enough to produce a Summary Map that enables robust and accurate localization over a wide range of seasonal, lighting, and weather conditions.
The International Journal of Robotics Research | 2009
Sylvain Joyeux; Rachid Alami; Simon Lacroix; Roland Philippsen
This paper presents a software component, the plan manager, which provides the services needed to build and execute plans in a multirobot context. This plan manager handles fully dynamic plans (insertion and removal of tasks), provides tools for safe concurrent execution and modification of plans, and handles distributed plan supervision without permanent robot-to-robot communication. The proposed concept is illustrated by a scenario which involves the navigation of a rover and an unmanned aerial vehicle in an initially unmapped environment.
Autonomous Robots | 2012
Stéphane Magnenat; Roland Philippsen; Francesco Mondada
The goal of creating machines that autonomously perform useful work in a safe, robust and intelligent manner continues to motivate robotics research. Achieving this autonomy requires capabilities for understanding the environment, physically interacting with it, predicting the outcomes of actions and reasoning with this knowledge. Such intelligent physical interaction was at the centre of early robotic investigations and remains an open topic.In this paper, we build on the fruit of decades of research to explore further this question in the context of autonomous construction in unknown environments with scarce resources. Our scenario involves a miniature mobile robot that autonomously maps an environment and uses cubes to bridge ditches and build vertical structures according to high-level goals given by a human.Based on a “real but contrived” experimental design, our results encompass practical insights for future applications that also need to integrate complex behaviours under hardware constraints, and shed light on the broader question of the capabilities required for intelligent physical interaction with the real world.
intelligent robots and systems | 2011
Roland Philippsen; Luis Sentis; Oussama Khatib
Whole-body operational space control is a powerful compliant control approach for robots that physically interact with their environment. The underlying mathematical and algorithmic principles have been laid in a large body of published work, and novel research keeps advancing its formulation and variations. However the lack of a reusable and robust shared implementation has hindered its widespread adoption.
ieee intelligent vehicles symposium | 2008
Kristijan Maček; Roland Philippsen; Roland Siegwart
This paper addresses the path following problem for autonomous Ackermann-like vehicle navigation. A control strategy that takes into account both kinodynamic and configuration space constraints of the vehicle, denoted as traversability-anchored dynamic path following (TADPF) controller is presented. It ensures secure vehicle commands in presence of obstacles, based on traversability information given by a global navigation function. By additionally using a reference point on the global smooth path, the local vicinity path configuration with respect to the vehicle is taken explicitly into account to ensure smooth and stable path following. Furthermore, a previously developed sliding mode path following (SMPF) controller that results in fast convergence rate and low path following error but which does not consider kinodynamic constraints, is augmented by the the kinodynamic and configuration space constraints check of the TADPF controller. The new proposed control strategy denoted as TADPF-SMPF controller thus combines advantageous characteristics of both original control strategies for path following, yielding inherent safety and vehicle dynamics margin. All three control strategies are verified in simulation, whereas the TADPF and TADPF-SMPF path following schemes are also verified experimentally.