Roland Pieruschka
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland Pieruschka.
The Plant Cell | 2011
Thea R. Pick; Andrea Bräutigam; Urte Schlüter; Alisandra K. Denton; Christian Colmsee; Uwe Scholz; Holger Fahnenstich; Roland Pieruschka; Uwe Rascher; Uwe Sonnewald; Andreas P. M. Weber
This work reports on a comprehensive systems biology analysis of maize leaves, concluding that C4 photosynthesis is established from sink tissue without an intermediate phase of C3 or C2 photosynthesis. We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Roland Pieruschka; Gregor Huber; Joseph A. Berry
The terrestrial hydrological cycle is strongly influenced by transpiration—water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO2 and other factors.
Functional Plant Biology | 2011
Uwe Rascher; Stephan Blossfeld; Fabio Fiorani; Siegfried Jahnke; Marcus Jansen; Arnd J. Kuhn; Shizue Matsubara; Lea L A Märtin; Andrew Merchant; Ralf Metzner; Mark Müller-Linow; Kerstin Nagel; Roland Pieruschka; Francisco Pinto; Christina Schreiber; Victoria Martine Temperton; Michael R. Thorpe; Dagmar van Dusschoten; Elizabeth Van Volkenburgh; Carel W. Windt; Ulrich Schurr
Plant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene-environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure-function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.
Precision Agriculture | 2008
Uwe Rascher; Roland Pieruschka
The light use efficiency (LUE) of photosynthesis dynamically adapts to environmental factors, and this leads to complex spatio-temporal variations of photosynthesis on various scales from the leaf to the canopy level. These spatio-temporal pattern formations not only help to understand the regulatory properties of photosynthesis, but may also have a constructive role in maintaining stability in metabolic pathways and during development. Optical remote sensing techniques have the potential to detect physiological and biochemical changes in plant ecosystems, and non-invasive detection of changes in photosynthetic energy conversion may be of great potential for managing agricultural production in a future bio-based economy. Here we review the results from selected remote sensing projects for their potential to quantify LUE from the level of single leaves to the canopy scale. In a case study with soybean grown under elevated CO2 conditions at the SoyFACE facility, we tested the photochemical reflectance index (PRI) for its capacity to quantify higher photosynthetic efficiency. In this study the PRI failed to detect differences in photosynthetic light conversion, most likely because of the variable canopy structure of the soybean canopy. We thus conclude that at the current state of the art the PRI cannot serve as an easy remote sensing approach to detect changes in photosynthetic energy conversion in agriculture. As an alternative we present approaches that aim to quantify the fluorescence signal of chlorophyll and thus estimate photosynthetic efficiency. In a second case study, using avocado as a model species, an active laser induced fluorescence transient (LIFT) method was applied to deliver maps of different photosynthetic efficiency within the canopy. Cold-induced down-regulation of photosynthesis in the upper canopy was detected, so active fluorescence may prove its potential for non-invasive monitoring of crops. With a view to the future, we present a method for large scale managing of agricultural practices within the framework of the FLuorescence EXplorer (FLEX) mission, which proposed launching a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. This mission was selected for inclusion in pre-phase A by the European Space Agency.
Functional Plant Biology | 2010
Roland Pieruschka; Denis Klimov; Zbigniew S. Kolber; Joseph A. Berry
Chlorophyll fluorescence measurements have been widely applied to quantify the photosynthetic efficiency of plantsnon-destructively.Themostcommonlyusedpulseamplitudemodulated(PAM)techniqueprovidesasaturatinglight pulse,whichisnotpracticalatthecanopyscale.Wereporthereonarecentlydevelopedtechnique,laserinduced fluorescence transient (LIFT),whichiscapableofremotelymeasuring thephotosyntheticefficiencyofselected leavesatadistance of up to50m.TheLIFTapproachcorrelatedwellwithgasexchangemeasurementsunderlaboratoryconditionsandwastestedin a field experiment monitoring the combined effect of low temperatures and high light intensity on a variety of plants during the early winter in California. We observed a reduction in maximum and effective quantum yield in electron transport for Capsicum annuum L., Lycopersicon esculentum L. and Persea americana Mill. as the temperatures fell, while a grass community was not affected by combined low temperature and high light stress. The ability to make continuous, automatic and remote measurements of the photosynthetic efficiency of leaves with the LIFT system provides a new approach for studying and monitoring of stress effects on the canopy scale.
Journal of Experimental Botany | 2015
Tania Gioia; Kerstin Nagel; Romina Beleggia; Mariagiovanna Fragasso; Donatella Bianca Maria Ficco; Roland Pieruschka; Pasquale De Vita; Fabio Fiorani; Roberto Papa
The process of domestication has led to dramatic morphological and physiological changes in crop species due to adaptation to cultivation and to the needs of farmers. To investigate the phenotypic architecture of shoot- and root-related traits and quantify the impact of primary and secondary domestication, we examined a collection of 36 wheat genotypes under optimal and nitrogen-starvation conditions. These represented three taxa that correspond to key steps in the recent evolution of tetraploid wheat (i.e. wild emmer, emmer, and durum wheat). Overall, nitrogen starvation reduced the shoot growth of all genotypes, while it induced the opposite effect on root traits, quantified using the automated phenotyping platform GROWSCREEN-Rhizo. We observed an overall increase in all of the shoot and root growth traits from wild emmer to durum wheat, while emmer was generally very similar to wild emmer but intermediate between these two subspecies. While the differences in phenotypic diversity due to the effects of primary domestication were not significant, the secondary domestication transition from emmer to durum wheat was marked by a large and significant decrease in the coefficient of additive genetic variation. In particular, this reduction was very strong under the optimal condition and less intense under nitrogen starvation. Moreover, although under the optimal condition both root and shoot traits showed significantly reduced diversity due to secondary domestication, under nitrogen starvation the reduced diversity was significant only for shoot traits. Overall, a considerable amount of phenotypic variation was observed in wild emmer and emmer, which could be exploited for the development of pre-breeding strategies.
Applied Optics | 2009
Karl Wunderle; Steven Wagner; Igor Pasti; Roland Pieruschka; Uwe Rascher; Ulrich Schurr; Volkert Ebert
A new, compact, spatially scanning, open-path 2.7 μm tunable diode laser absorption spectrometer with short absorption path lengths below 10 cm was developed to analyze the spatiotemporal dynamics of one-dimensional (1D) spatial water vapor gradients. This spectrometer, which is based on a room-temperature distributed feedback diode laser, is capable of measuring absolute, calibration-free, line-of-sight averaged, but laterally resolved 1D H2O concentration profiles with a minimum fractional optical resolution of 2.1×10−3 optical density (OD) (2.5×10−4 OD after a background subtraction procedure), which permits a signal-to-noise-ratio of 407 (3400) at 10,000 parts in 106 (ppm)H2O, or normalized sensitivities of 2.6 ppm⋅m (0.32 ppm m) at 0.5 Hz duty cycle. The spectrometers lateral spatial resolution (governed by the 500 μm sampling beam diameter) was validated by analyzing a well-defined laminar jet of nitrogen gas in humidified air. This scanning setup was then used to (a) quantitatively investigate for what we believe to be the first time the H2O boundary layer from 0.7 to 11 mm beneath the stomatous side of a single, undetached plant leaf, and (b) to study the temporal boundary layer dynamics and its dependence on stepwise light stimulation of the photosynthetic system. In addition the 2.7 μm diode laser was carefully characterized in terms of spectral purity, beam profile, as well as quasi-static and dynamic wavelength tuning coefficients.
Tree Physiology | 2014
Roland Pieruschka; Hendrik Albrecht; Onno Muller; Joseph A. Berry; Denis Klimov; Zbigniew S. Kolber; Zbyněk Malenovský; Uwe Rascher
The photosynthesis of various species or even a single plant varies dramatically in time and space, creating great spatial heterogeneity within a plant canopy. Continuous and spatially explicit monitoring is, therefore, required to assess the dynamic response of plant photosynthesis to the changing environment. This is a very challenging task when using the existing portable field instrumentation. This paper reports on the application of a technique, laser-induced fluorescence transient (LIFT), developed for ground remote measurement of photosynthetic efficiency at a distance of up to 50 m. The LIFT technique was used to monitor the seasonal dynamics of selected leaf groups within inaccessible canopies of deciduous and evergreen tree species. Electron transport rates computed from LIFT measurements varied over the growth period between the different species studied. The LIFT canopy data and light-use efficiency measured under field conditions correlated reasonably well with the single-leaf pulse amplitude-modulated measurements of broadleaf species, but differed significantly in the case of conifer tree species. The LIFT method has proven to be applicable for a remote sensing assessment of photosynthetic parameters on a diurnal and seasonal scale; further investigation is, however, needed to evaluate the influence of complex heterogeneous canopy structures on LIFT-measured chlorophyll fluorescence parameters.
Journal of Experimental Botany | 2010
Roland Pieruschka; Andrés Chavarría-Krauser; Ulrich Schurr; Siegfried Jahnke
Leaves within a canopy are exposed to a spatially and temporally fluctuating light environment which may cause lateral gradients in leaf internal CO2 concentration and diffusion between shaded and illuminated areas. In previous studies it was hypothesized that lateral CO2 diffusion may support leaf photosynthesis, but the magnitude of this effect is still not well understood. In the present study homobaric leaves of Vicia faba or heterobaric leaves of Glycine max were illuminated with lightflecks of different sizes, mimicking sunflecks. Photosynthetic properties of the lightfleck areas were assessed with combined gas exchange measurements and chlorophyll fluorescence imaging. Lateral diffusion in homobaric leaves with an interconnected intercellular air space stimulated photosynthesis and the effect was largest in small lightfleck areas, in particular when plants were under drought stress. Such effects were not observed in the heterobaric leaves with strongly compartmented intercellular gas spaces. It is concluded that lateral diffusion may significantly contribute to photosynthesis of lightfleck areas of homobaric leaves depending on lightfleck size, lateral diffusivity, and stomatal conductance. Since homobaric leaf structures have been reported for many plant species, it is hypothesized that leaf homobary may have an impact on overall plant performance under conditions with a highly heterogeneous light environment.
Archive | 2010
Uwe Rascher; Alexander Damm; Sebastian van der Linden; Akpona Okujeni; Roland Pieruschka; Anke Schickling; Patrick Hostert
The light use efficiency of photosynthesis dynamically adapts to environmental factors and is one major factor determining crop yield. Optical remote sensing techniques have the potential to detect physiological and biochemical changes in plant ecosystems, and non-invasive detection of changes in photosynthetic energy conversion may be of great potential for managing agricultural production in a future bio-based economy. Here we give an overview on the principles of optical remote sensing in crop systems with a special emphasis on investigating hyperspectral reflectance data and the sun-induced fluorescence signal. Especially sun-induced fluorescence as a parameter, which becomes important in remote sensing research may have great potential quantifying the physiological status of the photosynthetic apparatus. Both remote sensing principles were applied during the CEFLES2 campaign in Southern France, where the structural and functional status of several crops was measured on the ground and using state-of-the-art optical remote sensing techniques. Sun-induced fluorescence measurements over a variety of crops showed that additional information can be retrieved also over dense canopies, where classical remote sensing signals often saturate. With a view to the future, we discuss how hyperspectral reflectance and sun-induced fluorescence can quantitatively be related to photosynthetic efficiency and help to measure and manage productivity of natural and agricultural ecosystems.