Roland Riek
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland Riek.
Science | 2008
Christian Wasmer; Adam Lange; H. Van Melckebeke; Ansgar B. Siemer; Roland Riek; Beat H. Meier
Prion and nonprion forms of proteins are believed to differ solely in their three-dimensional structure, which is therefore of paramount importance for the prion function. However, no atomic-resolution structure of the fibrillar state that is likely infectious has been reported to date. We present a structural model based on solid-state nuclear magnetic resonance restraints for amyloid fibrils from the prion-forming domain (residues 218 to 289) of the HET-s protein from the filamentous fungus Podospora anserina. On the basis of 134 intra- and intermolecular experimental distance restraints, we find that HET-s(218–289) forms a left-handed β solenoid, with each molecule forming two helical windings, a compact hydrophobic core, at least 23 hydrogen bonds, three salt bridges, and two asparagine ladders. The structure is likely to have broad implications for understanding the infectious amyloid state.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Beate Winner; Roberto Jappelli; Samir K. Maji; Paula Desplats; Leah Boyer; Stefan Aigner; Claudia Hetzer; Thomas Loher; Marçal Vilar; Silvia Campioni; Christos Tzitzilonis; Alice Soragni; Sebastian Jessberger; Helena Mira; Antonella Consiglio; Emiley Pham; Eliezer Masliah; Fred H. Gage; Roland Riek
The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants that promote oligomer or fibril formation and tested the toxicity of these mutants by using a rat lentivirus system to investigate loss of dopaminergic neurons in the substantia nigra. The most severe dopaminergic loss in the substantia nigra is observed in animals with the α-syn variants that form oligomers (i.e., E57K and E35K), whereas the α-syn variants that form fibrils very quickly are less toxic. We show that α-syn oligomers are toxic in vivo and that α-syn oligomers might interact with and potentially disrupt membranes.
FEBS Letters | 1997
Roland Riek; Simone Hornemann; Gerhard Wider; Kurt Wüthrich
The recombinant murine prion protein, mPrP(23–231), was expressed in E. coli with uniform 15N‐labeling. NMR experiments showed that the previously determined globular three‐dimensional structure of the C‐terminal domain mPrP(121–231) is preserved in the intact protein, and that the N‐terminal polypeptide segment 23–120 is flexibly disordered. This structural information is based on nearly complete sequence‐specific assignments for the backbone amide nitrogens, amide protons and α‐protons of the polypeptide segment of residues 121–231 in mPrP(23–231). Coincidence of corresponding sequential and medium‐range nuclear Overhauser effects (NOE) showed that the helical secondary structures previously identified in mPrP(121–231) are also present in mPrP(23–231), and near‐identity of corresponding amide nitrogen and amide proton chemical shifts indicates that the three‐dimensional fold of mPrP(121–231) is also preserved in the intact protein. The linewidths in heteronuclear 1H–15N correlation spectra and 15N{1H}‐NOEs showed that the well structured residues 126–230 have correlation times of several nanoseconds, as is typical for small globular proteins, whereas correlation times shorter than 1 nanosecond were observed for all residues of mPrP(23–231) outside of this domain.
Nature | 1997
Carsten Korth; Beat Stierli; P. Streit; Markus Moser; Olivier Schaller; Roland Fischer; Walter Schulz-Schaeffer; Hans A. Kretzschmar; Alex J. Raeber; U. Braun; F. Ehrensperger; Simone Hornemann; Roland Riek; Martin Billeter; Kurt Wüthrich; Bruno Oesch
Prions are infectious particles causing transmissible spongiform encephalopathies (TSEs). They consist, at least in part, of an isoform (PrPSc) of the ubiquitous cellular prion protein (PrPC). Conformational differences between PrPCand PrPScare evident from increased β-sheet content and protease resistance in PrPSc(refs 1,2,3). Here we describe a monoclonal antibody, 15B3, that can discriminate between the normal and disease-specific forms of PrP. Such an antibody has been long sought as it should be invaluable for characterizing the infectious particle as well as for diagnosis of TSEs such as bovine spongiform encephalopathy (BSE) or Creutzfeldt–Jakob disease (CJD) in humans. 15B3 specifically precipitates bovine, murine or human PrPSc, but not PrPC, suggesting that it recognizes an epitope common to prions from different species. Using immobilized synthetic peptides, we mapped three polypeptide segments in PrP as the 15B3 epitope. In the NMR structure of recombinant mouse PrP, segments 2 and 3 of the 15B3 epitope are near neighbours in space, and segment 1 is located in a different part of the molecule. We discuss models forthe PrPSc-specific epitope that ensure close spatial proximity of all three 15B3 segments, either by intermolecular contacts in oligomeric forms of the prion protein or by intramolecular rearrangement.
Science | 2009
Samir K. Maji; Marilyn H. Perrin; Michael R. Sawaya; Sebastian Jessberger; Krishna C. Vadodaria; Robert A. Rissman; Praful S. Singru; K. Peter R. Nilsson; Rozalyn Simon; David Schubert; David Eisenberg; Jean Rivier; Paul E. Sawchenko; Wylie Vale; Roland Riek
Plethora of Secretory Amyloids Protein aggregation and the formation of amyloids are associated with several dozen pathological conditions in humans, including Alzheimers disease, Parkinsons disease, and type II diabetes. In addition, a few functional amyloid systems are known: the prions of fungi, the bacterial protein curli, the protein of chorion of the eggshell of silkworm, and the amyloid protein Pmel-17 involved in mammalian skin pigmentation. Now Maji et al. (p. 328, published online 18 June) propose that endocrine hormone peptides and proteins are stored in an amyloid-like state in secretory granules. Thus, the amyloid fold may represent a fundamental, ancient, and evolutionarily conserved protein structural motif that is capable of performing a wide variety of functions contributing to normal cell and tissue physiology. Peptide and protein hormones are stored in secretory granules in a nonpathological amyloid conformation. Amyloids are highly organized cross–β-sheet–rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer’s disease and type II diabetes. However, amyloids may also have a normal biological function, as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which is involved in mammalian skin pigmentation. We found that peptide and protein hormones in secretory granules of the endocrine system are stored in an amyloid-like cross–β-sheet–rich conformation. Thus, functional amyloids in the pituitary and other organs can contribute to normal cell and tissue physiology.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Lukasz Goldschmidt; Poh K. Teng; Roland Riek; David Eisenberg
The amylome is the universe of proteins that are capable of forming amyloid-like fibrils. Here we investigate the factors that enable a protein to belong to the amylome. A major factor is the presence in the protein of a segment that can form a tightly complementary interface with an identical segment, which permits the formation of a steric zipper—two self-complementary beta sheets that form the spine of an amyloid fibril. Another factor is sufficient conformational freedom of the self-complementary segment to interact with other molecules. Using RNase A as a model system, we validate our fibrillogenic predictions by the 3D profile method based on the crystal structure of NNQQNY and demonstrate that a specific residue order is required for fiber formation. Our genome-wide analysis revealed that self-complementary segments are found in almost all proteins, yet not all proteins form amyloids. The implication is that chaperoning effects have evolved to constrain self-complementary segments from interaction with each other.
Nature | 2005
Christiane Ritter; Marie-Lise Maddelein; Ansgar B. Siemer; Thorsten Lührs; Matthias Ernst; Beat H. Meier; Sven J. Saupe; Roland Riek
Prions are believed to be infectious, self-propagating polymers of otherwise soluble, host-encoded proteins. This concept is now strongly supported by the recent findings that amyloid fibrils of recombinant prion proteins from yeast, Podospora anserina and mammals can induce prion phenotypes in the corresponding hosts. However, the structural basis of prion infectivity remains largely elusive because acquisition of atomic resolution structural properties of amyloid fibrils represents a largely unsolved technical challenge. HET-s, the prion protein of P. anserina, contains a carboxy-terminal prion domain comprising residues 218–289. Amyloid fibrils of HET-s(218–289) are necessary and sufficient for the induction and propagation of prion infectivity. Here, we have used fluorescence studies, quenched hydrogen exchange NMR and solid-state NMR to determine the sequence-specific positions of amyloid fibril secondary structure elements of HET-s(218–289). This approach revealed four β-strands constituted by two pseudo-repeat sequences, each forming a β-strand-turn-β-strand motif. By using a structure-based mutagenesis approach, we show that this conformation is the functional and infectious entity of the HET-s prion. These results correlate distinct structural elements with prion infectivity.
Structure | 2010
Jason Greenwald; Roland Riek
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimers disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Marçal Vilar; Hui-Ting Chou; Thorsten Lührs; Samir K. Maji; Dominique Riek-Loher; René Verel; Gerard Manning; Henning Stahlberg; Roland Riek
The aggregation of proteins into amyloid fibrils is associated with several neurodegenerative diseases. In Parkinsons disease it is believed that the aggregation of α-synuclein (α-syn) from monomers by intermediates into amyloid fibrils is the toxic disease-causative mechanism. Here, we studied the structure of α-syn in its amyloid state by using various biophysical approaches. Quenched hydrogen/deuterium exchange NMR spectroscopy identified five β-strands within the fibril core comprising residues 35–96 and solid-state NMR data from amyloid fibrils comprising the fibril core residues 30–110 confirmed the presence of β-sheet secondary structure. The data suggest that β1-strand interacts with β2, β2 with β3, β3 with β4, and β4 with β5. High-resolution cryoelectron microscopy revealed the protofilament boundaries of ≈2 × 3.5 nm. Based on the combination of these data and published structural studies, a fold of α-syn in the fibrils is proposed and discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Eva-Maria Frickel; Roland Riek; Ilian Jelesarov; Ari Helenius; Kurt Wüthrich; Lars Ellgaard
The lectin chaperone calreticulin (CRT) assists the folding and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). It interacts with ERp57, a thiol-disulfide oxidoreductase that promotes the formation of disulfide bonds in glycoproteins bound by CRT. Here, we investigated the interaction between CRT and ERp57 by using biochemical techniques and NMR spectroscopy. We found that ERp57 binds to the P-domain of calreticulin, an independently folding domain comprising residues 189–288. Isothermal titration calorimetry showed that the dissociation constant of the CRT(189–288)/ERp57 complex is (9.1 ± 3.0) × 10−6 M at 8°C. Transverse relaxation-optimized NMR spectroscopy provided data on the thermodynamics and kinetics of the complex formation and on the structure of this 66.5-kDa complex. The NMR measurements yielded a value of (18 ± 5) × 10−6 M at 20°C for the dissociation constant and a lower limit for the first-order exchange rate constant of koff > 1,000 s−1 at 20°C. Chemical shift mapping showed that interactions with ERp57 occur exclusively through amino acid residues in the polypeptide segment 225–251 of CRT(189–288), which forms the tip of the hairpin structure of this domain. These results are analyzed with regard to the functional mechanism of the CRT/ERp57 chaperone system.