Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Schmid is active.

Publication


Featured researches published by Roland Schmid.


Journal of Bacteriology | 2003

Signal Transduction Protein PII Is Required for NtcA-Regulated Gene Expression during Nitrogen Deprivation in the Cyanobacterium Synechococcus elongatus Strain PCC 7942

M. Fadi Aldehni; Jörg Sauer; Christian Spielhaupter; Roland Schmid; Karl Forchhammer

The transcription factor of the cyclic AMP receptor protein/FNR family, NtcA, and the P(II) signaling protein play central roles in global nitrogen control in cyanobacteria. A dependence on P(II) for NtcA-regulated transcription, however, has not been observed. In the present investigation, we examined alterations in gene expression following nitrogen deprivation in Synechococcus elongatus strain PCC 7942 and specifically the roles of NtcA and P(II). Global changes in de novo protein synthesis following combined-nitrogen deprivation were visualized by in vivo [(35)S]methionine labeling and two-dimensional polyacrylamide gel electrophoresis analysis. Nearly all proteins whose synthesis responded specifically to combined-nitrogen deprivation in wild-type cells of S. elongatus failed to respond in P(II)- and NtcA-deficient mutants. One of the proteins whose synthesis was down-regulated in a P(II)- and NtcA-dependent manner was RbcS, the small subunit of RubisCO. Quantification of its mRNA revealed that the abundance of the rbcLS transcript following combined-nitrogen deprivation rapidly declined in wild-type cells but not in P(II) and NtcA mutant cells. To investigate further the relationship between P(II) and NtcA, fusions of the promotorless luxAB reporter genes to the NtcA-regulated glnB gene were constructed and these constructs were used to transform wild-type cells and P(II)(-) and NtcA(-) mutants. Determination of bioluminescence under different growth conditions showed that NtcA represses gene expression in the presence of ammonium in a P(II)-independent manner. By contrast, NtcA-dependent activation of glnB expression following combined-nitrogen deprivation was impaired in the absence of P(II). Together, these results suggest that under conditions of combined-nitrogen deprivation, the regulation of NtcA-dependent gene expression requires the P(II) signal transduction protein.


Journal of Bacteriology | 2002

Energetics of Helicobacter pylori and Its Implications for the Mechanism of Urease-Dependent Acid Tolerance at pH 1

Kerstin Stingl; Eva-Maria Uhlemann; Roland Schmid; Karlheinz Altendorf; Evert P. Bakker

In the presence of urea the neutrophilic human pathogen Helicobacter pylori survives for several hours at pH 1 with concomitant cytoplasmic pH homeostasis. To study this effect in detail, the transmembrane proton motive force and cytoplasmic urease activity of H. pylori were determined at various pH values. In the absence of urea, the organism maintained a close-to-neutral cytoplasm and an internally negative membrane potential at external pH values greater than 4 to 5. In the presence of urea, H. pylori accomplished cytoplasmic pH homeostasis down to an external pH of 1.2. At this external pH, the cytoplasmic pH was 4.9 and the membrane potential was slightly negative inside. The latter finding is in contrast to the situation in acidophiles, which develop inside-positive membrane potentials under similar conditions. Measurements of the time course of the membrane potential confirmed that addition of urea to the cells led to hyperpolarization. Most likely, this effect was due to electrogenic export of ammonium cations from the cytoplasm. The urease activity of intact cells increased nearly exponentially with decreasing external pH. This activation was not due to enhanced gene expression at low external pH values. In cell extracts the pH optimum of urease activity was dependent on the buffer system and was about pH 5 in sodium citrate buffer. Since this is the cytoplasmic pH of the cells at pH 1 to 2, we propose that cytoplasmic pH is a factor in the in vivo activation of the urease at low external pH values. The mechanism by which urease activity leads to cytoplasmic pH homeostasis in H. pylori is discussed.


Microbiology | 2001

Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12

Christine Harms; Yukiyo Domoto; Christian Celik; Evelyne Rahe; Stefan Stumpe; Roland Schmid; Tatsunosuke Nakamura; Evert P. Bakker

The activity of the two almost identical K+-uptake systems, Trk(H) and Trk(G), from Escherichia coli K-12 depends completely and partially on the presence of the trkE gene, respectively. trkE maps inside the sapABCDF operon, which encodes an ATP-binding cassette (ABC) transporter of unknown function from the subgroup of peptide-uptake systems. This study was carried out to clarify the role of sapABCDF gene products in the ATP dependence of the E. coli Trk systems. For this purpose DeltasapABCDF DeltatrkG and DeltasapABCDF DeltatrkH strains of E. coli containing plasmids with sap genes from either E. coli or Vibrio alginolyticus were used. All five plasmid-encoded E. coli Sap proteins were made in E. coli mini-cells. The presence of the ATP-binding SapD protein from either E. coli or V. alginolyticus alone was sufficient for stimulating the K+ transport activity of the Trk(H) and Trk(G) systems. K+-uptake experiments with Escherichia coli cells containing SapD variants with changes in the Walker A box Lys-46 residue, the Walker B box Asp-183 residue and the signature motif residues Gly-162 or Gln-165 suggested that adenine nucleotide binding to SapD rather than ATP hydrolysis by this subunit is required for the activity of the E. coli Trk(H) system. K+ transport via two plasmid-encoded Trk systems in a DeltasapABCDF E. coli strain remained dependent on both a high membrane potential and a high cytoplasmic ATP concentration, indicating that in E. coli ATP dependence of Trk activity can be independent of Sap proteins. These data are interpreted to mean that Trk systems can interact with an ABC protein other than SapD.


Infection and Immunity | 2001

Prolonged Survival and Cytoplasmic pH Homeostasis of Helicobacter pylori at pH 1

Kerstin Stingl; Eva-Maria Uhlemann; Gabriele Deckers-Hebestreit; Roland Schmid; Evert P. Bakker; Karlheinz Altendorf

ABSTRACT In the presence of urea, Helicobacter pylori survived for at least 3 h at pH 1. Under these conditions, the cells maintained their cytoplasmic pH at 5.8. De novo protein synthesis during acid shock was not essential for survival of H. pylori at pH 1.


Biochimica et Biophysica Acta | 1975

Current-voltage studies on the thylakoid membrane in the presence of ionophores

Roland Schmid; Wolfgang Junge

The reversibility of the binding of ionophores to the thylakoid membrane is studied. While gramicidin binds practically irreversibly, valinomycin and nonactin bind reversibly, however, only a small fraction (about 1%) of the membrane-bound valinomycin or nonactin is active in ion transport. The current-voltage relationship is evaluated under these circumstances. We have found that it is practically linear. This together with the relationship between current and ion concentration agrees qualitatively with the results reported for bimolecular lipid membranes, which contain a large fraction of negatively charged lipids. For the ionophores, valinomycin and nonactin, the binding equilibria (K approximately equal to 10-4) and the turnover numbers (approximately equal to 3-10-4/s) are evaluated for their action on the thylakoid membrane. Possible reasons for the inactivity of the majority of membrane-bound ionophore molecules are discussed.


Journal of Biological Chemistry | 2007

ATP Binding to the KTN/RCK Subunit KtrA from the K+-uptake System KtrAB of Vibrio alginolyticus ITS ROLE IN THE FORMATION OF THE KtrAB COMPLEX AND ITS REQUIREMENT IN VIVO

Nadine Kröning; Marion Willenborg; Nancy Tholema; Inga Hänelt; Roland Schmid; Evert P. Bakker

Subunit KtrA of the bacterial Na+-dependent K+-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K+ transporters and K+ channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His10-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding β-α-β-fold (“Rossman fold”). Photocross-linking and flow dialysis were used to determine the binding of [32P]ATP and [32P]NAD+ to His10-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the 32P-labeled nucleotides to the protein. [γ-32P]ATP bound with high affinity to His10-VaKtrA (KD of 9 μm). All other nucleotides tested exhibited KD (Ki) values of 30 μm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K+-translocating partner, VaKtrB-His6, as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His6 bound to Ni2+-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable.


The EMBO Journal | 2007

Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization.

Kerstin Stingl; Sonja Brandt; Eva-Maria Uhlemann; Roland Schmid; Karlheinz Altendorf; Chantal Ecobichon; Agnès Labigne; Evert P. Bakker; Hilde De Reuse

To date, the biological role of prokaryotic K+ channels remains unknown. Helicobacter pylori contains a gene encoding a putative K+ channel (HpKchA) of the two‐transmembrane RCK (regulation of K+ conductance) domain family, but lacks known bacterial K+ uptake systems. A H. pylori ΔhpKchA mutant presented a strong growth defect at low K+ concentration, which was compensated by KCl addition. The role of the separate RCK domain was investigated in H. pylori by mutagenesis of its internal start codon, which led to a K+‐dependent intermediate growth phenotype, consistent with RCK activating channel function. Tagging HpKchA C‐terminally, we detected a 1:1 stoichiometry of the full‐length HpKchA and the separate RCK domain. We constructed single amino‐acid exchanges within the unusual selectivity filter of HpKchA (ATGFGA) in H. pylori and observed complete loss (G74A), a slight defect (G76A or F75G) or wild‐type (A77D) channel function. HpKchA was essential for colonization of the murine stomach. These data show, for the first time, a biological function for a prokaryotic K+ channel, as a K+ uptake system, essential for the persistence of H. pylori in the gastric environment.


Biochimica et Biophysica Acta | 1990

Orientation of subunit c of the ATP synthase of Escherichia coli — a study with peptide-specific antibodies

Michael Hensel; Gabriele Deckers-Hebestreit; Roland Schmid; Karlheinz Altendorf

Antibodies were raised against a peptide of subunit c of the ATP synthase from Escherichia coli obtained by cleavage with cyanogen bromide. This peptide comprises the amino acid residues Gly-18 to Met-57 and contains the highly conserved, hydrophilic stretch of subunit c. Several conformation-specific populations of antibodies recognized this region both in isolated subunit c and in the intact F0 complex. In antibody binding studies with membrane vesicles of different orientations, recognition occurred only after incubation with everted membrane vesicles, independent of the presence or absence of F1, although a higher membrane protein concentration was necessary to observe the same antibody binding in the presence of the F1 part. From these results we conclude that the hydrophilic region of subunit c is exposed to the cytoplasmic side of the membrane.


Biochimica et Biophysica Acta | 1976

The coupling factor of photophosphorylation and the electric properties of the thylakoid membrane.

Roland Schmid; Noun Shavit; Wolfgang Junge

The rate of ATP synthesis of illuminated chloroplasts is correlated with the electric conductance of their inner membranes. In agreement with previous studies it is shown that ATP synthesis is paralleled by an increased conductance of the thylakoid membrane. This conductance together with the ability to form ATP is abolished if chloroplasts are treated with an antibody against the coupling factor CF1. It is not influenced by the fragmented monovalent antibody. This parallels the lack of influence of the fragmented antibody on ATP synthesis in contrast to its influence on hydrolysis and exchange reactions. We conclude that there are different sites for the interaction of the coupling factor with adenine nucleotides. Extraction of the coupling factor is shown to increase the membrane conductance by more than two orders of magnitude. Reincorporation of the crude coupling factor partially restores the net conductance of the membrane (increase in resistance by a factor of 2.5), while a higher degree of restoration was observed for ATP synthesis and the proton conductivity of the membrane. We conclude that the extraction procedure opens different conductive channels in the membrane; a proton specific one, possibly associated with the binding protein for the coupling factor, plus other channels for non-protons which in contrast to the proton channel cannot be plugged by reincorporation of the coupling factor.


FEBS Letters | 2003

Defined subcomplexes of the A1 ATPase from the archaeon Methanosarcina mazei Gö1: biochemical properties and redox regulation

Thorsten Lemker; Gerhard Grüber; Roland Schmid; Volker Müller

The potential A1 ATPase genes ahaA, ahaB, ahaC, ahaD, ahaE, ahaF, and ahaG from the anaerobic archaeon Methanosarcina mazei Gö1 were overexpressed in Escherichia coli DK8 (pTL2). An A1 complex was purified to apparent homogeneity and shown by Western blot and N‐terminal sequence analyses to contain subunits A, B, C, D, and F but to be devoid of subunits E and G. Further removal of subunit C was without effect on ATPase activity. The enzyme was most active at pH 5.2 and required bisulfite and acetate for maximal activity. Kinetic studies confirmed three new inhibitors for A1 ATPases (diethylstilbestrol and its derivatives hexestrol and dienestrol) and identified redox modulation as a new type of regulation of archaeal A1 ATPases.

Collaboration


Dive into the Roland Schmid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evert P. Bakker

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Junge

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge